

Master Thesis

Master of Science (MSc.)

Department of Tech and Software

Major: Software Engineering

Refactorability Analysis: Simulating and Comparing Monolithic

and Microservices

Architectures in Scalable Applications

Berk Limoncu

Matriculation Number: 81142531

 First supervisor: Prof. Dr. Rand Kouatly

Second supervisor: Prof. Dr. Iftikhar Ahmed

Submitted on: 27/02/2025

Statutory Declaration

I hereby declare that I have developed and written the enclosed Master Thesis completely by

myself and have not used sources or means without declaration in the text. I clearly marked

and separately listed all the literature and all the other sources which I employed when

producing this academic work, either literally or in content. I am aware that the violation of

this regulation will lead to the failure of the thesis.

Potsdam

Date: 27/02/2025 Signature

ii

Abstract

Modern software systems' requires scalability, flexibility, and maintainability have been

gradually increasing. A monolithic architecture pattern becomes ineffective for scaling up an

application since such systems tend to have high coupling, complex deployment processes, and

scalability challenges, preventing them from efficiently managing growing workloads. To

address these challenges, a microservice architecture pattern was introduced. Microservices

Architecture is a service-oriented architecture pattern that allows for independent scaling, fault

isolation, and ease of deployment as the application is built as a collection of multiple,

independent, small services. Transitioning from Monolithic-based architecture to

Microservices-based architecture comes with its own set of challenges including but not limited

to service communication, distributed data management, and migration complexity. One of the

major architectural design decisions to be considered during this transition is the choice of the

database model. That is whether to run a shared database across multiple services sharing tables

associated with multiple services or to adopt a database-per-service model. Database-per-

service model allows services to be autonomous but increases operation complexity & data

consistency challenges whereas sharing a database simplifies most of the challenges that come

with data sharing among multiple services but limits microservices’ ability to scale up.

This thesis aims to explore the viability, scalability, and performance trade-offs of

microservices based on a shared database approach. We devised a series of structured migration

strategies based on the Strangler Fig Pattern to incrementally refactor monolithic components

into microservices. We performed a series of performance evaluations to examine the

scalability of the monolithic and microservices architectures. Evaluations specifically targeted

three key aspects in the migration: performance of response times under concurrent workloads,

CPU utilization, and database performance. Results indicate that microservices scale better

than a monolithic architecture, but database contention in a shared database approach can also

result in performance bottlenecks that ultimately throttle scalability. We additionally examine

strategies to optimize database access, service orchestration, and API communication

overhead.

The main contribution of this paper is the empirical investigation of the scalability of

microservices using the same database. The resulting output will aid organizations in the

process of moving away from a monolithic application to a distributed system over

microservices. It also provides a way to deploy microservices online and conduct scalability

testing in the real world using cloud computing. The analysis shows that although

microservices provide the ability to scale specific modules of a system, an organization is at

risk of not seeing those benefits due to its database strategy. More efficient database strategies

can be used to obtain a much better and faster-performing system. Future work would include

an investigation into databases that are not shared among the services, Event-Driven

Architectures where services communicate asynchronously, and microservice migration

through automated tasks.

iii

Table of Contents

Chapter 1. Introduction 1

1. 1 Background 1

1. 2 Problem Statement 2

1. 3 Research Questions 2

1. 4 Research Objectives 3

1. 5 Contributions 5

1. 6 Thesis Organization 6

Chapter 2. Theoretical Background 8

2. 1 Understanding Architectural Transitions: From Monoliths to Microservice 8

2. 2 Monolithic Architecture: A Unified but Rigid Approach 9

2. 3 Microservice Architecture: A Modular and Scalable Paradigm 10

2. 4 Scaling in Software Engineering: Vertical vs. Horizontal Scaling 11

2. 5 Performance and Resource Utilization 11

2. 6 Refactorability in Software Systems: Transitioning to Microservices 12

2. 7 Theoretical Summary: Foundations for Implementation 12

Chapter 3. Literature Review 13

3. 1 Overview of Monolithic and Microservices Architectures 13

3. 2 Refactorability: Definition and Importance 15

3. 3 Challenges in Transitioning from Monolith to Microservices 16

3. 4 Existing Transition Strategies and Best Practices 18

3. 5 Discussion on Literature Review 21

Chapter 4. Methodology 24

4. 1 Overview 24

4. 2 Proposed Framework/Model/Technique 25
4.2.1 Architectural Design of Monolith vs. Microservices (Strangler Fig Pattern) 25
4.2.2 Service Decomposition Strategy 28
4.2.3 Data Management (Shared Database Model) 29
4.2.4 Deployment and Scaling 31

4. 3 Methodology 31
4.3.1 System Design and Implementation 31
4.3.2 Evaluation Setup 33
4.3.3 Case Study/Experimental Setup 33

4. 4 Evaluation Criteria 35

4. 5 Benchmark Algorithms 37

Chapter 5. Results and Discussion 39

5. 1 Quantative Insights from System 39

5. 2 Performance Under Load: Docker Stats Analysis 39

iv

5.2.1 Monolithic System Performance 39
5.2.2 Microservices System Performance 41
5.2.3 CPU Usage Analysis 43
5.2.4 Memory Usage Analysis 44

5. 3 Performance Under Load: Response Time and Throughput Analysis 46
5.3.1 Monolithic System Performance 46
5.3.2 Microservices System Performance 47
5.3.3 Comparative Analysis of Response Time and Throughput 48

5. 4 Refactorability Time & Challenges 50

5. 5 Hardware & Infrastructure Cost 52

5. 6 Discussion 54

Chapter 6. Conclusion and Future Work 56

6. 1 Conclusion 56

6. 2 Future Work 57

v

List of Tables

Table 3.1:Comparison of Monolithic and Microservices Architectures(Powell and Smalley,

2024) .. 14
Table 3.2: Factors Affecting Refactorability (Monolithic vs Microservices - Difference

Between Software Development Architectures- AWS, 2024) .. 15
Table 3.3: Challenges in Transitioning from Monolith to Microservices(Al-Debagy and

Martinek, 2018).. 18
Table 3.4: Comparison of Migration Approaches (AlOmar, Mkaouer and Ouni, 2024) 20
Table 3.5: Best Practices for Microservices Migration ... 20
Table 4.1: Comparison of Service Decomposition Strategies(Chaieb, Sellami and Saied, 2023)

.. 28
Table 4.2: REST API Endpoints for both Monolithic and Microservice Architecture 32
Table 4.3: Summary of Evaluation Metrics and Their Purpose... 36
Table 5.1: CPU Utilization Data .. 43
Table 5.2 : Memory Utilization Data ... 44
Table 5.3: Time Spent Comparison (Monolith vs Microservice) .. 51
Table 5.4: Cost Analysis Table (Monolithic vs. Microservices) ... 53

vi

List of Figures

Figure 2.1: Comparison of Monolithic and Microservices Architectures (Karwatka, 2020) 8
Figure 4.1: Monolithic vs. Microservices Transition (Source: (Monoliths to Microservices

using the Strangler Pattern, no date)) ... 26
Figure 4.2: Structural Differences Between Monolithic and Microservices Architecture 27
Figure 4.3: Entity Relationalship Diagram (ERD) .. 30
Figure 4.4: Vertical Scaling vs. Horizontal Scaling(Perry, 2023) ... 38
Figure 5.1: Monolith Resources in IDLE .. 40
Figure 5.2: Monolith Resorcues with 1000 User Load .. 40
Figure 5.3: Monolith Resources with 2500 User Load .. 40
Figure 5.4: Monolith Resources with 5000 User Load .. 41
Figure 5.5: Microservice Resources IDLE .. 41
Figure 5.6: Microservice Resources with 1000 User Load.. 42
Figure 5.7: Microservice Resources with 2500 User Load.. 42
Figure 5.8: Microservice Resources with 5000 User Load.. 42
Figure 5.9: CPU Utilization Trends ... 43
Figure 5.10: Memory Utilization Trends ... 45
Figure 5.11: Monolithic System Response Time and Throughput Under 1000 User Load 46
Figure 5.12:Monolithic System Response Time and Throughput Under 2500 User Load 47
Figure 5.13: Monolithic System Response Time and Throughput Under 5000 User Load 47
Figure 5.14: Microservice System Response Time and Throughput Under 1000 User Load . 47
Figure 5.15: Microservice System Response Time and Throughput Under 2500 User Load . 48
Figure 5.16: Microservice System Response Time and Throughput Under 5000 User Load . 48
Figure 5.17: Response Time vs. Users (Monolith vs. Microservices) 49
Figure 5.18: Throughput vs. Users (Monolith vs. Microservices) ... 49

vii

List of Abbreviations

ACID Atomicity, Consistency, Isolation, and Durability

CI/CD Continuous Integration and Delivery

CPU Central Process Unit

DDD Domain Driven Design

EDD Event Driven Design

ERD Entity Relationship Diagram

RAM Random Access Memory

SFP Strangler Fig Pattern

VCS Version Control System

1

Chapter 1. Introduction

1. 1 Background

As software businesses seek higher scalability, more agility, and longer maintainability

in their modern software systems, they are compelled to adopt architectural paradigms that

satisfy these conflicting requirements: Historically all components, the user interface, the

business logic, and the data access layer were tightly coupled into a single codebase and

deployment unit in monolithic architectures usually also all three per server instance. On top

of that, such a system markets itself as providing central control over its architecture while

simplifying initial development and debugging. Problems are always just around the corner

though: with monolithic systems, this means that when you want to increase an entire

subsystem's performance by an order of magnitude, every bit has to be rewritten.

Moving from monolithic architectures to microservices architectures results in applications

where modules are more loosely coupled and can be separately deployed, each providing a

specific business capability. The modularity of microservices not only enhances scalability but

also improves fault isolation and allows businesses to choose different technologies for

different services (Newman, 2019). However, transitioning to a microservices environment

introduces complexities, such as distributed system coordination, network latency, and

increased operational overhead compared to monolithic systems (Dragoni et al., 2017). In

particular, inter-process communication mechanisms like REST APIs and message brokers

(e.g., Kafka, RabbitMQ) are more susceptible to bottlenecks due to network latency and data

serialization overhead (Apache Kafka, no date).

Among the debates over resource utilization and long-term maintenance, a recurring topic is

whether a particular venture's architecture should be monolithic or microservice-based:

Monolithic systems take advantage of cheap hardware and share resources across components.

However, they face a single point of failure and cannot tear out part of themselves without

bleeding everywhere. This kind of software also tends to be updated at once rather than in

incremental mode. Microservices allow precise scaling (e.g., auto-scaling high-demand

services), but require duplicate infrastructure (e.g. separate databases, containers) and

orchestration tools like Kubernetes (Al-Debagy and Martinek, 2018).

Moving from monolithic architectures to microservices has significant complications including

loosening tightly bundled components, restructuring data flows, and dealing with cross-cutting

concerns such as system orchestration (Kristiyanto et al., 2024). Creating completely separate

containers for each small partition, with communication in between as a means of releasing

tension, set the buildings plainly out of reach. The proposed infrastructure and integration

mechanisms required to support major changes detract from the simplicity of would-be rapid

migrations. Source Code trials show that the development of its own indigenous middleware

component was particularly useful to shed light on interfaces and operational routines in service

communication, yet this was also just one example. Reporting on a new IT practice at Chesnas

since the beginning of last month (known as 'tiny bridge' architecture) set up finite parameters

to tackle these issues within reasonable limits to simulate this process, a "microbridge"

middleware was developed to manage inter-service communication, reflecting real-world

transition hurdles (Salaheddin Elgheriani and Ali Salem Ahme, 2022)

2

1. 2 Problem Statement

The monolithic vs. microservices debate has gained traction among practitioners as the

complexity of scalable applications grows (Dragoni et al., 2017). Although monolithic

architectures are simple and easy to manage, microservices architectures provide significant

benefits such as increased modularity and fault isolation (Newman, 2019). Nevertheless,

empirical studies measuring their refactorability when faced with scalability constraints remain

sparse (Santos, 2018). Recent work has shown that the transition between monolithic and

microservices architectures often reveals problems related to data consistency, and service

decomposition (Dragoni et al., 2017), as well as higher operational complexity (Tapia et al.,

2020). While these issues are particular to MTSs and MTS architectures, they are still not

addressed in the current literature, which we attribute to a lack of empirical work on these

topics.

Since my simulated projects had structural transitions, I noticed critical problems such as

inefficiency in resource usage and performance bottlenecks. Apache JMeter (Apache JMeter

- Apache JMeterTM, no date) was used to compare the performance of these projects and these

metrics will be discussed in more detail in the Results and Discussion section. The

microservices architecture, as an example, had issues with latency due to inter-service

communication, and the monolithic system was limited in its ability to handle concurrent user

loads. This result emphasizes the importance of systematic comparisons of each architecture

under scalability constraints, at least in terms of operational cost and reusability.

Organizations are exposed to expensive, trial-and-error migration tactics as a result of this

mismatch, which frequently leads to operational bottlenecks and delayed deployments. Our

creation of the "microbridge" middleware, for instance, brought to light the difficulties in

overseeing inter-service communication and redesigning data flow—two crucial but little-

studied facets of architectural transitions (Mehta et al., 2024).

This research project aims to bridge this gap by developing a refactorability analysis

framework, leveraging scalability simulations and middleware prototypes to deliver data-

driven insights for architectural decision-making.

1. 3 Research Questions

A research question is a question that a research project sets out to answer. Choosing

the right architecture is important when considering the performance, scalability, and

operation. Over the past decade many organizations have started to transform from monolithic

architecture to microservices or have directly migrated to microservices. Hence, there is a need

to understand the implications of migrating to microservice architecture. This paper intends to

answer the above problem with the help of some leading research questions:

• What performance metrics are indicators of performance change?

• How much does scalable this project for both Monolithic and Microservices

architecture?

• How much refactoring effort matters in determining the serviceability of

microservices?

• How disruptive is it to migrate from monolithic to microservices?

• What would this migration or refactoring cost in terms of Development vs

Operation Cost?

3

This study seeks to answer the following research questions:

1. Performance Metrics: What differences are observed between the monolithic and

microservices versions of projects I developed to understand the difference between

microservice and monolith in terms of key performance metrics, such as response time,

CPU utilization, and memory consumption, when subjected to realistic workload

patterns? Quantifying these performance variations is imperative to determine whether

the microservices-inspired refactoring has any apparent performance improvements or

whether the architectural overhead of distributed systems incurs additional inefficiency.

2. Scalability Considerations: What are the comparative strengths and weaknesses of the

monolithic and microservices architectures as applied to projects when considering

workload scale and increased traffic demands? While microservices architectures have

conventionally been linked to improved scalability, this research questions whether any

purported benefits truly outweigh the potential inefficiencies of increased complexity.

3. Refactoring Effort & Quantification: What is the migration effort required to refactor

the existing monolithic project application to adapt a microservices-inspired

architecture, and what reasonable metrics could be applied to estimate the quantitative

effort involved? Software refactoring is often a resource-intensive endeavor that

requires significant development time, architectural refactoring, and dependency

reallocation. This research will provide different methodologies to quantify the overall

refactoring feasibility between monolithic and microservices approaches, specifically

considering code complexity metrics and deployment iterations.

4. Migration Challenges: What are the key challenges in the process of migration from

the monolithic to the microservices version, and what architectural and practical

concerns must be addressed to facilitate such a migration? The scope of prioritization

for these challenges has grown significantly to span not only technical service

orchestration and data consistency concerns, but also team organization structure,

deployment methodology, and operational procedure.

5. Infrastructure & Cost Differences: What are the infrastructure, hardware, and

associated resource requirements for the monolithic and microservices, and what is the

comparative cost of deployment and operation between microservices and monolithic

counterparts? Despite claims that microservices encourage modular scaling rather than

monolithic over-provisioning, the elevated changes incurred from excessive network

overhead and containerized cloud orchestration could begin to increase observed

operating costs instead. By quantifying the comparative costing information between

the two approaches, this research addresses whether the advantages of microservices

structures are worth the potential monetary and infrastructure cost.

Each of these research questions aims to illuminate a different aspect of the trade-offs involved

in architectural decisions. The methodology section will detail the specific approaches used to

answer these questions.

1. 4 Research Objectives

The purpose of this study is to explore the refactorability of the monolithic architecture

into microservices, with a strong emphasis on the scalability, performance, and operational

4

problems related to refactoring. Microservices are a popular choice for software engineering

solutions as they provide improved agility, scalability, and maintainability (Hassan, Abdel-

Fattah and Mohamed, 2024). However, refactoring an existing system into a microservices

architecture is a difficult, multi-challenged process with a variety of challenges, such as service

decomposition, synchronous vs. asynchronous communication, and data consistency

(Bashtovyi and Fechan, 2024). Therefore, a well-formed framework that can be used for a

systematic evaluation of the technical, architectural, and operational factors that govern

refactorability will be studied, providing an empirical insight of the context for selecting and

assessing modernization alternatives in software architectural decision-making in the context

of modern software engineering (Alcides Mora Cruzatty et al., 2024)

To accomplish this, the study begins by examining the performance metrics of monolithic and

microservices architectures through controlled performance tests. Utilizing Apache JMeter and

Docker, this work replicates real-world requests to assess key performance indicators such as

API response time, CPU utilization, and memory consumption. Particular attention is given to

how API gateways introduce latency and impact system responsiveness in microservices

(Hassan, Abdel-Fattah and Mohamed, 2024). Moreover, this study explores how each

architectural style performs under high-load conditions, comparing their resource utilization

efficiency and capacity to manage overload scenarios.

Another objective of the study is to examine the differences in scalability and resource

allocation between monolithic and microservices architectures. By simulating different traffic

loads of client requests, we aim to evaluate how each system responds to growing user

demands. In particular, we investigate the bottlenecks of monolithic systems that inhibit

scalability, and how microservices can mitigate these bottlenecks by distributing workloads

across multiple independent services (Berry et al., 2024).

Beyond the performance and scalability, this paper also explores the organizational and

technical challenges to move from a monolithic system to microservices. Through a

comprehensive review of academic and peer-reviewed literature, this study identifies key

challenges in service composition, data consistency issues, and DevOps challenges with

microservices including CI/CD pipelines and infrastructure as Code (IaC) (Lahami et al.,

2024). It also analyses the complexity of monitoring tools such as Prometheus and the ELK

Stack since these tools are implemented to maintain and keep microservices-based systems

under control (ZakerZavardehi, 2024).

Finally, this paper analyses the infrastructure and operational costs of monoliths and

microservices to evidence the economic impact of moving to a distributed architecture. The

paper takes a practical approach by building and testing a minimal cost-analysis tool to

demonstrate how to quantify the long-term trade-offs between monoliths and microservices

(Alcides Mora Cruzatty et al., 2024).

By addressing the gap between architectural theory and practice, the findings of this research

will provide a holistic framework for assessing the eligibility and challenges of monolithic

systems for refactoring to microservices. These findings will be useful to businesses and

software architects in making sound decisions to refactor large, tightly coupled systems into

modular and scalable microservices while minimizing risk and ensuring optimum operational

value (Berry et al., 2024).

5

1. 5 Contributions

The findings of this study contribute theoretically, practically, and methodologically to

the field of software architecture by identifying monolithic architecture refactorability in to

microservices. The present study tries to bridge the gap between theory and practice. It provides

a structured fashion to assess modularity, scalability, and maintainability for migration of any

midsize inventory system to microservice architecture. This study also helps software

architects, software engineers, and organizations would benefit from this research in one of

methods and steps they can utilize in order to understand whether and how to migrate from a

monolithic system to a microservices-based system or not by providing quantitative decision

making framework to see software adaptability by exploring its scalability, maintainability,

and modularity metrics.

The findings of this study advance software decomposition theory by proposing an innovative

estimation method for refactorability in relation to system modularity (Thatikonda and

Mudunuri, 2024). Furthermore, this study takes a different perspective compared to the

previous research, which tends to recommend the positive aspects of microservices. The

findings of this work provide a more nuanced approach by assessing the trade-offs related to

scalability, maintainability, and latency throughout the transition process (Nassima, Hanae and

Karim, 2024). Thus, this study provides insights into the complexity of refactorability in

architectural transformations and contributes to knowledge of reengineering challenges in

software restructuring and migration. By extensively examining the structural constraints of

monolithic systems, this study provides an in-depth understanding of microservices migration

to the scientific field and its implications for the evolution of software and design strategies.

From a practical standpoint, this research provides practical hints on how to improve the

maintainability of software systems. The guidelines provided in this research are aligned with

industrial best practices for developing scalable applications. A refactorability assessment

model is provided which allows software architects to analyze the refactorability of monolithic

applications to microservices architecture according to quantified software engineering

metrics. Guidelines for developing scalable applications are given in this study, which could

allow organizations to better understand the potential challenges involved in microservices

development (Kristiyanto et al., 2024). Empirical research presented in this study provides

operational evidence for the trade-offs between monolithic and microservices architecture,

which could allow various industry stakeholders to make informed choices about what should

and should not be modernized and deployed in the cloud (Hassan, Abdel-Fattah and Mohamed,

2024).

Methodologically, this study proposes a refactorability scoring model, which can be used by

organizations to determine the migration effort based on quantitative variables such as time-

to-architectural-refactor, levels of complexity, and dependency resolution. This refactorability

scoring model can be used as an unbiased assessment that can be replicated, adapted, and

verified in future studies that focus on software evolution and decomposition techniques.

Furthermore, the study performs a benchmarking performance analysis of monolithic vs

microservices architectures by comparing latency, response time, and scalability following the

controlled performance test using Apache JMeter and Docker (Kristiyanto et al., 2024).

Through empirical benchmarking, this study strengthens architectural decision-making in

software engineering by providing data-backed rationales to ensure organizations migrate their

monolithic architectures to microservices.

6

Taken as a whole, this study serves as a dual lens of theoretical understanding and practical

implementation by providing a structured framework to decide the intricacy and feasibility of

microservices migration. It provides software architects, engineers, and organizations with a

set of tools to make informed decisions on architectural restructuring, ensuring that legacy

systems are systematically evaluated before transitioning them to microservices. By combining

academic theory with practical real-world applications, this study builds on current software

engineering methodologies and aids the industry in building scalable, maintainable, and

performant systems.

1. 6 Thesis Organization

This thesis is organized in six chapters. Each chapter presents context and background

relevant for this research. . The dissertation is presented as follows:

The first chapter introduces the research problem and its rationale. It describes the background

of this study, the problem statement, research questions, and objectives of the study. This

chapter also outlines the main contributions of this research and the ways it pushes the state-

of-the-art in the state-of-the-art in software architecture beyond its current status.

The second chapter "Theoretical Background" presents a comprehensive overview of

monolithic and microservices architectures by defining specific fundamental principles, along

with the advantages and disadvantages of the reviewed architectures. At the end of the chapter,

several important concepts such as scalability, performance optimization and system

modularisation, are reviewed ensuring that the reader has a thorough understanding of the

theoretical underpinnings of the research problem before proceeding to the practical

implementation aspects of the case study.

Chapter 3 is the literature review. It presents previous works and studies of monolithic and

microservices architectures in terms of performance quantification, scalability problems, and

empirical evidence of migration. Based on the gaps in the literature, it justifies the need for an

empirical refactorability study.

Chapter 4 explains methodology used in the study. Research approach, design, and data

collection methods are presented. This chapter describes the architectural realization of

monolithic and microservices models for creating the ground for comparison. Further,

benchmarking tools, performance metrics, and evaluation criteria are shown. In addition,

chapter describes the challenges of refactoring and strategies used to overcome them.

Chapter 5 is dedicated to results and discussion. It overlays the empirical results in terms of

execution throughput, resource consumption and scalability. Section also contains a state-

comparative evaluation of the costs of migration from monolithic to microservices architecture.

The discussion and interpretation of results attempted to relate findings obtained in this study

to those of previous research. The findings of the study have been discussed in terms of their

practical implications.

Finally, the sixth chapter summarizes the thesis and presents the conclusions of the research. It

recaps the main findings and discusses their theoretical and practical implications. It also

acknowledges the limitations of the study and suggests some directions for future work. For

example, as related to technological challenges, the thesis suggests studying automated

7

refactoring techniques. Measuring the maintainability of the microservices and SOA

architectures is another area for future work. Alternative architectural styles could be

considered. The thesis ends with references that list all the sources that were cited in the text,

and appendices that contain some additional materials, such as code snippets, experimental

data, and other relevant information.

8

Chapter 2. Theoretical Background

This section introduces the basic concepts of monolithic and microservices

architectures, as well as their differences, strengths, and weaknesses at the structural level. In

this article, we are going to discuss this trend of microservices and migrating from monolithic

to microservices-based systems which many companies are currently following due to the

growing necessity of scalability, maintainability, and high-performance applications in

software development nowadays.

This chapter will also introduce some of the important architectural decisions like deployment

approaches, infrastructure cost, service orchestration and fault-tolerance approaches. We will

have a look into the difficulties during the refactoring of a monolithic setup into microservices

with theory and examples. I seek to establish this theoretical basis so that the reader will have

the appropriate foundation to appreciate the empirical analysis and implementation discussed

in the chapters that follow.

2. 1 Understanding Architectural Transitions: From Monoliths to Microservice

The migration to microservices from monolithic architecture has become a heavily

discussed topic amongst software engineering community due to an increased need

for scalable, maintainable and high performance applications (Hassan, Abdel-Fattah, and

Mohamed, 2024). In this chapter, I present a theoretical background for the work presented in

the thesis including a detailed discourse on monolithic and microservices architectures, their

pros and cons, scalability, performance metrics, and the challenges they undergo during

refactorability.

This aims to set out a knowledge base for the empirical study carried out in the subsequent

chapters. This is important context to assess the technical and operational challenges to

architectural transitions. It elaborates on the different factors affecting architectural choices

like deployment, infrastructure costs, service orchestration, and fault tolerance methods.

Figure 2.1: Comparison of Monolithic and Microservices Architectures (Karwatka, 2020)

9

In microservices architecture, typically each service owns a particular database with the pattern

Database-per-Service can be seen in Figure 2.1 which improves data isolation, scales

independently, and reduces the possibility of cascading failures (Maj, Zielony and Piotrowski,

2024). In this study microservices share a single database. During the transition from

monolithic to microservices, these microservices sharing a single database pattern is often used

to implement microservices without losing data consistency (Paccha and Velepucha, 2025).

One database schema design ensures robust transactional consistency and ease of data

synchronization using the relational database one source of truth model. Nevertheless, it comes

with the trade-offs of sacrifices being made on independent scalability of services, single point

of failures, and performance bottleneck (Tian et al., 2024). On balance, the shared database

schema model used in this project has been optimized to maintain consistency across services

whilst fulfilling part of the overall system requirements (Amrutha, Jayalakshmi, and Geetha,

2024).

2. 2 Monolithic Architecture: A Unified but Rigid Approach

Monolithic architecture is the conventional model of software design: all the

components of the application are bundled together in a single package. Historically, it used to

dominate the enterprise computing landscape, with enterprise applications and data-center

backed applications being built as monoliths (Mehta et al., 2024). In a monolithic application,

all the code for various components of the app is in a single codebase and not distributed across

separate codebases. The unified code is tightly coupled, meaning there is little flexibility to

slice down the code into separate components or to separate different components and services

from each other (Owen, 2025). There is normally a central database, and all the modules in the

monolithic software communicate directly with one another through the shared memory and

program space (González and Ortiz, 2024). A cohesive and symmetrical interface is a pro

monolithic architecture offer. Nevertheless, scalability and maintainability end up becoming

an issue the bigger a project becomes.

Despite the mainstream move towards microservices, monolithic architectures continue to

offer certain advantages in particular scenarios. Simpler development: Having a single code

base can make it easier for developers to get up to speed on the codebase, and maintain a single

software product and environment. Easier debugging and testing: Thanks to operating in a

single, shared runtime environment, it can be easier to troubleshoot and debug programs, and

to trace calls and errors through the system (Maj, Zielony and Piotrowski, 2024). Simpler

deployment: Again, the monolith is packaged as a single deployment unit, so the entire

application is compiled and deployed in one go (Muley, 2024). More predictable performance:

Operating within a single execution context, rather than communicating between discrete

services, enables developers to avoid the risk of inter-service network latency (Mehta et al.,

2024). For those reasons, monolithic systems may still be ideally suited to small-to-medium

sized applications or situations where the project in question demands an accelerated

development process or few development cycles.

However, as applications become larger and more complex, monolithic architectures start to

experience serious drawbacks. One of the most important issues is scalability – monolithic

applications need to be scaled as a complete unit rather than component-wise, leading to a

waste of available resources and to an increase in operating costs (Salaheddin Elgheriani and

Ali Salem Ahme, 2022). Another major problem of the monolithic style is the chosen

technology stack. Through the use of a single stack, developers are prevented from adopting

10

different technologies, leading to a stagnating technology stack and making the modernization

of legacy applications cumbersome (Santos et al., 2024). Finally, deployment flexibility is

another major problem – even the tiniest updates are required to follow the deployment

schedule of the rest of the system (Ataei, 2024). This also involves an increase in downtime

and risk of deployment (Ataei, 2024), forcing organizations to establish complex strategies for

rollbacks in case of a defective deployment (Maj, Zielony and Piotrowski, 2024).

In terms of code maintainability, monolithic systems tend to accrue technical debt as systems

grow, because it becomes hard to manage a large code base with many interdependencies.

Some difficulties include slow feature development cycles owing to the coordination effort

required and higher risk of introducing bugs (Sethi and Panda, 2024). Furthermore, fault

isolation is another challenge in monolithic systems. Failures in a single module can affect the

entire system. This reduces the reliability of the system and increases the time taken to recover

from such a failure (Bashtovyi and Fechan, 2024). Therefore, due to such limitations,

organizations often look to migrate to microservices to achieve better scalability,

maintainability and operational efficiency.

While monolithic architectures provide simplicity, predictability, and ease of development,

they lack scalability, maintainability, and flexibility in bigger and more dynamic systems

(Harris, no date). The benefits of better resource utilization, independent scalability, and

improved system resilience are the main reasons most organizations shift from monolithic

architectures to microservices. The challenges encountered during the migration process

despite the benefits make it important for an organisation to make a clear evaluation of their

architectural needs before taking any action. The monolithic vs microservices debate

emphasizes the importance of knowing what architecture an application needs.

2. 3 Microservice Architecture: A Modular and Scalable Paradigm

A diagrammatic comparison between microservices and monolithic architecture is one

of the most important visual aid items (Kamisetty et al., 2023). Microservices vs. monolithic

architectures figure would show how monolithic systems consist of a single, tightly coupled

unit with numerous components along with a shared database, while microservices architecture

is made up of individual and autonomous services, each with its own database, using APIs to

communicate (Sun, no date). Such visualization of the distinction would emphasize why

microservices bring more flexibility and better fault isolation than monolithic applications

which are facing bottlenecks when it comes to scale (El Akhdar, Baidada and Kartit, 2024).

The second key figure would be a workflow diagram, illustrating an architecture of the

microservices, supporting microservices interactions in the distributed architecture. This would

include an API Gateway routing the client requests to the appropriate microservices like

authentication, payments, order management, and so on (Bhatnagar and Mahant, 2024). Each

microservice will have their own decentralized database. The flow of communication between

the microservices will be explained, which generally tend to be REST APIs, gRPC, and event-

driven messaging queues (Ramachandran and Thirumaran, 2024). This would help exemplify

how microservices are communicating asynchronously but at the same time achieving data

consistency and scalability.

A table detailing potential advantages and disadvantages of microservices would provide a

clear comparison at a quick glance. The advantages of microservices are their independent

scaling, failure isolation, and choice of technology and the disadvantages are the increased

11

communication overhead, data consistency challenges, and security risks. (Ali, 2024) Such a

table would present a clearly written comparison between the two methods. Microservices offer

greater modularity and efficiency but also dense complexity in their deployment and

monitoring (Salunkhe et al., 2024). A table provides clear and easy access to visually seeing

the comparison.

Another recommended figure is a scalability and fault isolation diagram, showing how

microservices independently scale and isolate failures of a single service from crashing the

whole application (Shao et al., 2024). Specifically, the diagram should have a load balancer

distributing incoming traffic to multiple instances of a microservice and explicitly label that

horizontal scalability, scaling by adding more instances to a microservice, is favoured over

vertical scalability, scaling by increasing the resources available to each instance (Shao et al.,

2024). Likewise, the figure should also illustrate how one failing service can independently

restart without failing other microservices, providing fault tolerance, indeed, this is a major

benefit of microservices over monolithic system, where a single failed service can cause an

application-wide outage (Curnicov, 2025).

Finally, a case study diagram on microservices adoption in the industry would provide a real-

world perspective on their impact. This visual could include logos or representations of major

companies such as Netflix, Amazon, Uber and Spotify, highlighting how each utilizes

microservices to achieve scalability, resilience, and rapid deployment (El Akhdar, Baidada and

Kartit, 2024). For instance, Netflix leverages microservices to support millions of concurrent

video streams, while Amazon applies microservices for dynamic inventory management and

personalized recommendations (Bhatnagar and Mahant, 2024). By visualizing these industry

implementations, the diagram would underscore how microservices enable innovation in large-

scale applications.

2. 4 Scaling in Software Engineering: Vertical vs. Horizontal Scaling

Scalability in a system is its capability to handle a growing amount of workload from

an end-to-end system point of view. Vertical (or upward) scalability is adding more resources

(CPU, RAM) to the existing server to increase performance (Gandhi and Vashishtha, 2025).

This is the most popular approach used in monolithic architectures. Horizontal (or outward)

scalability is deploying multiple copies of a service and delegating traffic to each with the help

of a load balancer (Dragoni et al., 2017), which is one of the main features of microservices.

Unlike monoliths, which must scale vertically and only up to the hardware limit of the physical

host on which they run, microservices support horizontal scaling by default, enabling the

system to serve large-scale concurrent requests efficiently (Fowler and Beck, 2019). A scalable

system uses a variety of techniques such as load balancing, caching, and database partitioning

to enhance its overall performance and to handle the workload efficiently (Chen et al., 2024).

2. 5 Performance and Resource Utilization

In Performance Evaluation, we have Key Metrics Latency. This term refers to the time

taken for a system to respond to a request. It is affected by inter-service communication and

network overhead. Throughput Indicates system efficiency — For each second of continuous

operation that involves such requests to process how many messages does it get roundly turned

out Around 200? CPU and Memory Usage The resource consumption required for

infrastructure to be kept at performance levels Maintain high trafficThere are a few differences

between Monolithic and microservice architectures. But, the dynamic scaling made possible

12

under these conditions with microservices challenges how appropriate one will indeed prove

to your attitude rests entirely on disposition or preference.

2. 6 Refactorability in Software Systems: Transitioning to Microservices

The ease with which one piece of code can be changed is called refactorability.

Motivations for refactorability involve: Code modularity: a well-structured monolith can more

easily be refactored into microservices. Dependency management: Pulling apart tightly

coupled components Database design: Moving from one big database to many little databases

means consideration is needed as to its layout and how it can be made fault-tolerant. Poorly

designed monolithic applications throw up formidable challenges to refactoring, necessitating

incremental migration strategies and the use of well-defined decomposition processes.

2. 7 Theoretical Summary: Foundations for Implementation

This chapter explained the basics of monolithic and microservices designs. It also

discussed how to scale them, measure their performance, and the challenges of making changes

to them. These ideas lay the foundation for the experiments discussed in the following chapters.

In these experiments, a large system will be changed into smaller services to see how it affects

speed, resource use, and ease of maintenance.

13

Chapter 3. Literature Review

3. 1 Overview of Monolithic and Microservices Architectures

The growth of software architecture has seen a transition from centralized monolithic

systems to more decentralized microservices. Monolithic architectures have been the standard

followed architecture, where the entire functionality of the application (including user

interface, business logic, and the data access layer) is tightly coupled, resulting in a single

deployable unit. Thereby creating an efficient architecture, when building small to medium-

sized applications that are less likely to scale. However, since all software components co-exist

in a tightly coupled state in Monolithic systems, some issues arise. The tightly coupled state

creates inflexible deployments, a high dependency between the business logic and components,

and less scalability. Since all the components of a monolithic system are tightly coupled when

deploying let’s say a single module in the system, the entire application has to be deployed.

Scaling Monolithic architecture requires replicating the whole system and not the modules of

the system that requires scaling. As a result, Sharding a monolithic system resource is usually

inefficient, if one module or application section experiences a sudden spike in traffic, it will

still be limited by the system resources (Kassetty and Chippagiri, 2025).

A Monolithic system is difficult to maintain, with a tightly coupled state, a change at one end

(module) causes an effect on the system as a whole. While developing new functionality on an

existing monolithic system, the entire system must be first set up before development begins

which is inefficient and time-wasting, as it could be avoided by developing new functionality

as a loosely coupled service to be integrated on successful development and testing.

Development is quite difficult since all components need to be constantly built and redeployed,

to ensure the system remains functional. Additionally, already-built applications with a large

customer base are faced with the challenge of downtime. Once a change occurs in a monolithic

deployment, you have to redeploy the entire application which causes downtime during the

system update. This approach is unlike microservices’ continuous development which seeks to

isolate sections of the application during the development cycle and integrate after proper

testing.

In response to these disadvantages, the microservices architecture has become a popular

alternative, especially for large-scale, cloud-native applications. Microservices break down

applications into a collection of small, independently deployable services that communicate

via APIs. Designing each microservice around a specific business capability it allows for higher

modularity and technical flexibility. Microservices can independently scale specific

components rather than monolithic systems that inherently need all components, saving system

resources and improving fault isolation. This means that any outages in one service don’t

necessarily have a negative impact on the whole system, increasing the resilience and reliability

of the system. Furthermore, microservices enable faster development cycles since teams can

concurrently work on different services without negatively impacting the entire application.

Nevertheless, despite these aforementioned benefits, microservices do not come without

additional complexities, including increased network latency due to inter-service

communication, challenges of maintaining data consistency across distributed services, and the

need for advanced monitoring and orchestration tools (Wang, 2024).

The transition from monolithic to microservices architecture is not straightforward. It poses

technical and organizational challenges, such as decomposing tightly coupled components,

dealing with distributed data, and ensuring reliable inter-service communication. One of the

14

most common migration tactics is the Strangler Fig Pattern, where microservices are introduced

gradually alongside the monolithic system. This allows teams to slowly adopt microservices

without having to do a complete system rewrite. Even so, the migration process is nontrivial:

it can involve large efforts in the service decomposition process, API management, and

infrastructure provisioning. Operational overhead increases due to the large number of

independent services that teams have to manage, meaning there is a greater need for automated

deployment pipelines, container orchestration (such as Kubernetes), and service discovery

mechanisms. Security is another issue: teams must be cautious to secure the large attack surface

introduced with the higher number of microservices, and strong network security mechanisms

must be put in place to protect inter-service communication. Furthermore, the network latency

introduced by S2S (service-to-service) calls and duplication of code (such as libraries,

functions, types, and models used across services) are also two more challenges.

Although challenging, research has shown that once successfully transitioned, systems built

using microservices see significant improvements in scalability, agility, and fault tolerance,

especially in distributed cloud environments. Research also shows that microservices

architectures are better suited to handle heavy traffic loads than monolithic applications. By

allowing horizontal scaling, microservices can fulfill higher demands as only the necessary

services need to be scaled instead of the entire application. Organizations such as Netflix and

Amazon have presented the success of microservices by taking advantage of independent

service scaling to improve system responsiveness and reduce operational costs in the long term

(Chen et al., 2024). However, microservices do not come without sacrifices, and organizations

must determine whether the complexity of microservices is worth the scalability and

maintainability benefits. Monolithic architectures may still be suitable for simple applications

with relatively straightforward workflows and a limited need for scalability.

Table 3.1:Comparison of Monolithic and Microservices Architectures(Powell and Smalley, 2024)

Feature Monolithic

Architecture

Microservice

Architecture

Scalability Vertical scaling (entire

system)

Horizontal scaling

(independent services)

Deployment Whole system

redeployed

Independent service

deployment

Technology Stack Unified stack Multiple stacks

allowed

Fault Tolerance Single point of failure Failures isolated per

service

Development Speed Slower due to

dependencies

Faster due to team

autonomy

Operational

Complexity

Lower

Higher (requires

orchestration)

A summary of direct comparison between the monolithic and microservices architectures is

provided in Table 3.1. The main advantages and disadvantages of these architectures are related

to scalability, deployment flexibility, resilience to faults, and operational complexity. The

decision between using monolithic or microservices architectures depends on a number of

factors including the scale-out requirements of an organization and the availability of resources

for development and operations. As summarised in Table 3.1, monolithic systems are preferred

15

where smaller applications with a lower number of application workflows need integration

while microservices are suitable in highly scalable distributed systems where sub-services of a

system need to scale independently from each other.

As software systems continue to evolve, the debate between monolithic and microservices

architectures remains relevant. While monolithic architectures offer simplicity and lower initial

costs, microservices provide greater flexibility, scalability, and fault tolerance, making them

more suitable for large, complex applications. The decision to migrate from monolithic to

microservices should be guided by an organization’s specific needs, technical capabilities, and

long-term scalability goals. Ongoing research and development continue to address challenges

associated with microservices adoption, particularly with automated refactoring, distributed

data management, and inter-service communication. As more organizations transition to

microservices, best practices and strategies for architectural transformation will continue to

develop, ensuring informed decision-making in selecting the most efficient architecture for an

organization's operational and scalability requirements.

3. 2 Refactorability: Definition and Importance

Refactorability is a classic quality that indicates how easily a system can be

restructured and optimised without changing its original behaviour. Refactorability is a

fundamental concept in software engineering. This reduces the complexity of migration,

handles technical debt and helps in long-term maintainability. It helps to make gradual

enhancements and seamless decomposition of any tightly coupled code with migration easier.

That is, refactorability is the extent to which existing code or a system is amendable to

refactoring. module boundaries and least interdependencies in monolithic systems help in

easier refactor than those with tightly coupled components containing interlinked code and

these components need to be rewritten almost completely (Sulkava 2023). This means rest that

how refactorable a monolithic system is, affect how much well organisations could able to

move toward microservices as apart from without flexibility architecture there then exist a a

lot of migration challenges within place. Some of them are data consistency problems,

performance issues due to inefficient service decomposition and low communication overhead

between multiple services (Rathod, Joseph and Martin, 2023).

 Even beyond migrating software when we look at the importance of refactorability. It applies

in turn to scalability, system resilience, and development agility. A refactored system, for

instance, can help you to adopt domain-driven design (DDD) and therefore extract

microservices out strategically plus guarantee that services stayed loosely coupled and

independently deployable. Decreased refactorability may motivate organizations to push

forward with an anti-pattern they call monolithic microservices that also introduces

performance bottlenecks and additional cost for compensating them (Alongi et al., 2022).

Even further, when adapting microservices, the database refactoring is crucial: a monolithic

database usually requires decomposing the schema or even sharing data with event-driven

deviant microservices to be autonomous. Therefore, it has been discovered through research

that the automated refactoring tools alongside the code maintainability metrics (in other words

the cyclomatic code complexity, dependency analysis etc.) could improve the refactorability

evaluation and the evolution of software (Abid et al., 2020).

Table 3.2: Factors Affecting Refactorability (Monolithic vs Microservices - Difference Between Software Development

Architectures- AWS, 2024)

Factor Impact on Refactorability Challenges in Migration

16

Code Modularity Higher modularity: easier

migration

Poorly structured code

requires extensive

refactoring

Coupling & Dependencies

Loosely coupled components

are easier to extract

High coupling makes

decomposition difficult

Database Structure

Well-structured databases

enable smoother migration

Monolithic databases require

schema changes or

decomposition

Service Boundaries

Clearly defined service

boundaries help in

microservices extraction

Undefined boundaries lead to

service overlap and

redundancy

Scalability & Performance

Optimized systems transition

more efficiently

Performance bottlenecks

may arise post-migration

The knowledge of these factors is important for assessing the readiness of the system for

moving to microservices. Automated refactoring tools, static code analysis, dependency graphs

and refactorability scoring models can provide information on how easily a monolithic system

can be decomposed. Table above (Table 3.2) provides a summary of the primary factors that

affect refactorability, their consequences and challenges during migration.The knowledge of

these factors is important for assessing the readiness of the system for moving to microservices.

Automated refactoring tools, static code analysis, dependency graphs and refactorability

scoring models can provide information on how easily a monolithic system can be

decomposed.

To mitigate migration difficulties, a number of best practices have been promoted such as

modularizing the monolith, embedding an API gateway, and migrating incrementally (e.g.,

Strangler Fig Pattern) (AlOmar, Mkaouer and Ouni, 2024). It allows monolithic elements to be

replaced with microservices iteratively, without losing the consistency of the system.

Essentially, refactorability scoring is evolving into a new area of research to measure the

modularity, separation of concern, and also code complexity of the software systems to

evaluate the effort required for their migration to microservices. Over the course of this

evolution, refactorability is one of the key driving factors of software systems that remain

maintainable, scalable, and efficient. This means organizations should invest in refactorability

so that they avoid future bottlenecks whenever business requirements change or when new

technologies come into play.

3. 3 Challenges in Transitioning from Monolith to Microservices

There are various challenges organizations face when transitioning from a monolithic

architecture to microservices. These challenges range from technical to operational and

organisational. Despite having many benefits associated with microservices such as scalability,

maintainability and deployment, organisations face many struggles such as, service

17

decomposition, data management, inter-service communication, infrastructure complexity,

DevOps challenges and cultural shift (Kamisetty et al., 2023).

One of the major obstacles lies in the service decomposition complexity of microservices is

how to identify service boundaries (i.e. the architectural constraint) while decomposing a

monolithic system into smaller, autonomous units. It is rather difficult to establish hidden and

implicit logical boundaries between services because many monolithic legacy systems are

composed of highly coupled components that interact with each other through intertwined and

shared business logic and database schemas. And Data Driven Design (DDD) is often used to

define microservices based on limited contexts or business capabilities. Inappropriate

decomposition, however, will lead to excessive fragmentation, resulting in overhead associated

with operating too many services. Moreover, in order to refactor a monolithic application into

a loosely coupled microservices system, it will be necessary to introduce significant changes

to the code structure, leading to accumulated technical debt and migration risks.

Another key challenge is data management and consistency. Monolithic applications often

operate with a single centralized database, whereas microservice-based applications feature a

distributed data architecture where each microservice possesses its own database. This

transition necessitates a fundamental paradigm shift in data management, resulting in

transaction consistency, data replication, and synchronization (Samant, 2024). Traditional

database transactions using ACID principles must be superseded by Event Driven Architecture

(EDA) or distributed transaction protocols such as the Saga Pattern to maintain eventual

consistency. However, if not correctly implemented, they can cause data inconsistency, race

conditions, and performance impact.

Inter-service communication introduces its own complexity. While monolithic applications call

functions within the same process, microservices must communicate with each other using

APIs, message queues, or event-driven messaging systems. While REST APIs, gRPC, and

message brokers (Kafka, RabbitMQ) solve this problem, they also come with their own

implementation challenges, introducing problems of network latency, fault tolerance, and

dealing with API versioning (Garimilla, 2024). More issues are introduced with increased inter-

service communication and number of microservices, such as the risk of cascading failures,

resulting in the application for circuit breakers and retry mechanisms to control it to avoid

downtime of the whole system.

Infrastructure complexity is an additional challenge for microservices adoption. Critical

monolithic applications mostly run on a single-server or VM based environment. However,

critical microservices require containerization (Docker), orchestration (Kubernetes) and

service discovery (Mehta et al., 2024). Hosting applications across multiple nodes increases

resource provisioning complexity. As a result, service mesh technologies that manage load

balancing, security, and observability, such as Istio, are difficult to adopt. Debugging

microservices requests without proper monitoring and logging solutions is highly complex,

thus taking into consideration using tools such as Prometheus, Grafana, and the ELK stack is

desirable.

Continuous integration and delivery (CI/CD) requirements also increases deployment and

DevOps burdens. Monoliths must be deployed as a single unit and typically require a minimal

CI/CD effort, whereas microservices require independent deployment of services and hence a

robust CI/CD pipeline, automated testing and rollback capabilities (Sethi and Panda, 2024).

Blue–Green deployments, Canary releases and Feature Flags become essential to minimize

18

down-time and mitigate deployment failures. Organizations have to use infrastructure-as-code

(IaC) tools like Terraform and Ansible to ensure that their microservices environments are

scalable and easily reproducible.

Beyond the technical difficulties, the adoption of microservices also requires organizational

and cultural shifts. Monolithic teams tend to be centralized, whereas microservices follow a

decentralized government (i.e. cross-function teams and DevOps). Organizations should

support training and restructuring of teams in order to enable developers, testers and operations

to take ownership of microservices by understanding distributed systems and distributed

architectures. Resistance to change, the unknowns of unfamiliar microservices, and unclear

governance models can impede migration. Because of this, many businesses settle for hybrid

architectures, keeping some legacy monolithic modules which can become dependencies that

are difficult to manage.

Table 3.3: Challenges in Transitioning from Monolith to Microservices(Al-Debagy and Martinek, 2018)

Challenge

Description Impact on Transition

Service Decomposition

Complexity

Identifying appropriate

microservices boundaries

Risk of over-fragmentation

or under-decomposition

Data Management &

Consistency

Moving from a single

database to distributed data

stores

Increased complexity in

ensuring data consistency &

transactions

Inter-Service

Communication

APIs, messaging queues, and

event-driven communication

Higher latency, increased

failure points, need for

circuit breakers

Infrastructure Complexity

Need for containerization

(Docker, Kubernetes) and

monitoring tools

High learning curve,

increased resource overhead

Deployment & DevOps

Challenges

Shift to CI/CD, automated

testing, and infrastructure as

code (IaC)

Need for new tooling and

deployment automation

strategies

Organizational & Cultural

Shift

Moving from centralized to

decentralized teams with

DevOps

Requires restructuring, new

development workflows, and

upskilling

Addressing these challenges requires a well-defined migration strategy, starting with

modularizing the monolith, adopting API gateways and service meshes, implementing

observability tools, and gradually transitioning components to microservices. A hybrid

approach, such as the Strangler Fig Pattern, can help organizations incrementally migrate

functionalities while keeping the legacy monolith operational. Table 3.3 summarizes the major

challenges in transitioning to microservices.

3. 4 Existing Transition Strategies and Best Practices

As systems transition from a monolithic architecture to microservices architecture,

there is a need to have a concrete migration strategy to ensure system stability, scalability, and

efficient operation of the migrated application. It is more than a technical exercise but includes

architectural, infrastructural, and organizational changes (Baumgartner, 2022). There are

different migration strategies available for decomposition from incremental decomposition

19

strategies like the Stangler Fig Pattern to complete rewriting strategies (Big Bang Migration).

Domain-Driven Design (DDD), event-driven architectures, databases transition strategies, and

CI/CD automation are some of the best practices required in this phase to ensure a successful

and risk-mitigated migration.

A progressive incremental migration is often preferred to a Big Bang migration as it reduces

the operational risks and gives teams the chance to exercise the microservices before full

deployment. In a incremental migration, monolithic applications are slowly completed into

microservices. It allows organisations to carry on their usual business while optimising their

systems and focusing on their performance. This also means that services can be refactored and

individually scaled without damaging the system as a whole (Santos, 2018). A Big Bang

migration entails rewriting the entire application as microservices. While it might take less time

to complete a Big Bang migration, it poses serious risk to a business as deployment difficulties

might only be detected once the application is complete. Such failures might include inter-

service failures, scalability issues and database bottleneck Depending on particular business

model, companies should choose the way of migration to microservices that compatible to their

current infrastructure and operational requirements .

The Strangler Fig Pattern is a popular incremental migration approach used to achieve a

smoother monolithic to microservices transition. Strangler fig pattern creates a new

microservice along with the existing monolithic functionality, and gradually replaces the

monolithic functionality with the new microservice. The strangler fig pattern eventually

replaces all the monolithic functionality until the newly developed microservices entirely

replaces the monolith. This pattern is the most commonly used pattern for large-scale

enterprise applications that should be up and running throughout the migration process.

Strangler Fig Pattern reduces technical debt, and the risk of a major disruption of the existing

system during migration. Teams can validate the behaviour of microservices before

deprecating the monolithic functionality.

A core tool in migrating to microservices is Domain-Driven Design (DDD), which aids in the

discovery of explicit microservice boundaries. Many monolithic applications suffer from

tightly coupled components, further complicating decomposition. DDD builds the

microservice architecture on business domains, giving autonomy, high cohesion and loose

coupling to the resulting architecture (Manchana, 2021). Furthermore, DDD uses concepts such

as Bounded Contexts and Aggregates to ensure that microservices capture a specific business

function and do not have inappropriate dependencies. Companies using DDD principles to

build microservice architectures can avoid the over-fragmentation seen in some microservice

implementations and allow their microservices to remain isolated and manageable.

Another handy approach in microservices transition is adopting an event-driven architecture

(EDA) to enable asynchronous communication among services (Goniwada, 2022). While the

method of communication between services in monolithic architectures is typically

synchronous and dependent on API calls, EDA enables loose coupling between services while

providing real-time data exchange (Goniwada, 2022). Since services do not rely on each other,

it aids in enhancing fault tolerance, scalability, and responsiveness. Examples of event brokers

used in event-driven architectures include Apache Kafka and RabbitMQ. They serve as

intermediaries between services and enable asynchronous communication via events. This

benefits distributed systems where services must run independently of each other. Event

sourcing is a technique where all state changes are stored as events so that services can recollect

20

previous states. By using event brokers like Apache Kafka, EDA improves services'

auditability and reliability (Goniwada, 2022).

One of the difficulties of microservices migration is database management. The typical design

is database-per-service, meaning each microservice owns its independent data store. But in

most real-life cases (this project included), organisations still adopt the shared-database model

due to transaction consistency concerns and operational constraints (Khakame, 2016). While

shared-database simplifies data integrity and transaction handling, it makes services strongly

coupled to each other, resulting in low autonomy and scalability. To address these concerns,

database-transition strategies are introduced, which allow organisations to adopt in event-

driven data synchronisation, CQRS (Command Query Responsibility Segregation) and Saga

Patterns to handle distributed transaction management while achieving consistency of data

across microservices.

Table 3.4: Comparison of Migration Approaches (AlOmar, Mkaouer and Ouni, 2024)

Migration Approach

Advantages

Challenges

Best Use Case

Incremental

(Strangler Fig

Pattern)

Minimizes risk, allows

gradual testing and

rollout

Requires hybrid

system management

during migration

Large legacy

applications

needing

continuous

availability

Big Bang Migration

Faster transition, full

adoption of

microservices

High risk of failure,

potential system-wide

downtime

Small

applications or

startups

Hybrid Approach

Allows some

monolithic

components to persist

temporarily

Complex system

orchestration, requires

careful planning

Organizations

with partial

microservices

adoption

Although this project does not feature a complete CI/CD pipeline, it is nonetheless an essential

best practice for deploying scalable microservices. The process focuses on automatically

building, testing, and deploying microservices, ensuring that they are released quickly and

consistently. In monolithic deployments, deployment is fairly rudimentary as the entire

monolithic system is deployed as a single unit. Unlike monolithic deployments, microservices

must deploy independently, as one specific service should not be dependent on another service.

Various CI/CD pipeline tools such as Jenkins, GitHub Actions, and GitLab CI/CD facilitate

the deployment of microservices by automating the rollback mechanism, canary release, and

high availability strategy (Baumgartner, 2022). As a result, CI/CD enhances the resilience of

the system, minimising downtime and speeding up development cycles which is critical for

modern cloud-native architectures.

Table 3.5: Best Practices for Microservices Migration

Category Best Practice

Service Design Use DDD & bounded contexts to define clear

microservice bounds

Data Management

Implement Saga Pattern for managing

distributed transactions.

21

Deployment

Automate CI/CD pipelines to enable frequent

and stable releases.

Observability

Use centralized logging & distributed tracing

to monitor microservices.

To ensure a successful transition, organizations must adopt best practices tailored to their

specific use cases. Table 3.4 provides a comparative overview of migration approaches, while

Table 3.5 outlines best practices for a structured and risk-minimized transition.

3. 5 Discussion on Literature Review

The transition from monolithic architectures to microservices represents a paradigm

shift in software engineering, as it provides a solution to the challenge of scalability,

maintainability, and operability that arises from a tightly coupled system design. The literature

review about this topic examined theoretical perspectives, challenges, migration strategies, and

best practices, which address not only the strengths of microservices architectures, but also the

entanglement of their adoption. Monolithic architectures provide simplicity, centralised

management, and low operational overhead. However, they cannot provide the flexibility and

scalability that modern cloud-native applications require. Microservices architectures, on the

other hand, offer horizontal scalability, independent deployability, and fault isolation,

providing freedom (and chaos) that modern large-scale distributed applications require.

However, these benefits come with a cost of complexity in service decomposition, data

management across independent services, inter-services communication, and infrastructure

orchestration (Baumgartner, 2022).

A crucial driver of migration success relates to the monolithic system being refactorable,

meaning the extent to which modular components of code can be extracted and converted into

microservices. Code modularity, code coupling, database design and service boundaries are

major factors that determine the complexity of the migration process. Research has shown that

using automated refactoring tools, code maintainability metrics and structured decomposition

techniques improve the monolith system's readiness for microservices adoption (Sulkava,

2023). Additionally, resolving technical debt prior to the migration effort reduces risk for

performance bottlenecks, redundant services and high operational overhead.

The literature review highlights the main issues encountered by organizations when migrating

legacy applications to micro-services which includes service decomposition and its

complexity, data consistency, inter-service communication overhead, infrastructure

complexity, and DevOps automation requirements (Kamisetty et al., 2023). In addition to

decoupling components from the monolith, organizations shall take due care necessary in

defining service boundaries such that micro-services do not tend to exceed beyond manageable

limits by over-decomposing and fall into the micro-service anarchy trap (Samant, 2024). To

achieve appropriate granularity and enclosing of business logic, organizations relying on

micro-services tend to adopt Domain-Driven Design (DDD). Without a proper governing

mechanism, the complexity tends to increase and eventually end up with a non-functional

system. Therefore, within any system employing micro-service architecture, finding a perfect

balance between DDD and the organization's capability to handle micro-services plays an

important role in building robust software systems. On the other hand, for an enterprise system

deploying a micro-service architecture, it becomes essential to ensure distributed data and

22

transaction consistency between the micro-services. Now, needless to say, consistency can be

achieved by introducing dependencies between the microservices but that will go against the

concept of having loosely-coupled or independent deployable services. Therefore within a

distributed system, managing the scale of the application while preserving consistency and

availability to its client(s) becomes a prime factor for successfully adopting a micro-services

architecture. Organizations adopting micro-services started employing patterns like event-

driven architecture (EDA), CQRS, and the Saga Pattern within their systems to ensure data and

transaction consistency. Each of these patterns presents a different view on how data and

consistency can be achieved at scale without making any compromises on reliability. For an

enterprise system deploying a micro-services architecture, the inter-service communication

overhead can become a massive pain point for the organizations. As the volume of micro-

services increases, then so does the network traffic and the number of inter-service requests.

Within a distributed system, having robust infrastructure that can handle concurrent requests

at such a scale becomes an essential factor for successfully adopting a micro-service

architecture. Due to the need of having robust APIs to serve their client requests and process

inter-service requests, organizations tend to adopt more APIs within their implementation. This

in turn puts more pressure on developing a robust API gateway and API management services

(Garimilla, 2024). Besides evolving the decentralized architecture and hosting services using

containerized infrastructure with containers like Docker, Kubernetes, etc., event-driven

systems must possess proper service discovery mechanisms to handle dynamic

registration/deregistration of micro-services and process concurrent requests at scale. Though

organizations can successfully decouple services from the monolith, it becomes an overhead

for organizations to then manage the deployment, operation, and monitoring of such large

infrastructure that, as a whole, forms the distributed system. It evolves an organization's

capability to manage such large decentralized systems by introducing automation in delivering

infrastructure-as-code CI/CD pipelines, and implementing DevOps tools to closely monitor

and track infrastructure and their operations.

Various research papers in this field address these challenges and list incremental migration

approaches, such as Strangler Fig Pattern, which enables organizations incrementally move

towards microservices, without disturbing the functioning of a legacy system. Big

organizations like Netflix and Amazon have successfully updated their monolith system into

microservices using this approach, minimizing risk in regular operations. Big bang migrations

on the other hand involves replacing the old system completely, which exposes to the high risks

of failure, downtime of systems and scalability issues. Automation of CI/CD pipelines,

observability tools (Prometheus, Grafana, ELK Stack) and infrastructure-as-code are some of

the best practices which have been established over time to improve deployment as well as

improve system resilience and availability.

Although microservices offer concrete benefits in terms of faster development velocities,

unified scalability, and enhanced maintainability, they also pose a lot of complexity that

requires thorough preparedness, robust architectural setup, and organizational alignment.

Microservices may not be appropriate for all applications, with organizations needing to

evaluate whether the overhead of adopting microservices will add business value to the

organization while satisfying scalability and performance requirements for the system. The

consensus among literature suggests that while monolithic architectures are still a valid choice

for smaller applications with limited scaling potential, microservices architectures are better

suited for large-scale, distributed applications. Further research continues to explore automated

refactoring, AI-driven service decomposition, and greater security improvements to smoothen

microservices transition; ultimately, businesses should determine how migration could be

23

accomplished based on an organization's systems, technical knowledge and business needs in

the longer run.

24

Chapter 4. Methodology

4. 1 Overview

The change from monolith to microservices design has actually come to be a main

emphasis in contemporary software program design driven by the requirement for scalability,

modularity, and also maintainability in dispersed systems (Barzotto and Farias, 2022). Standard

monolith architecture while simpler to establish, has a tendency to end up being inflexible as

well as tough to range as they expand causing difficulties in implementation, upkeep, and also

group efficiency. Microservices architecture style on the other hand allows a decentralized and

also service-oriented strategy where independent solutions interact by means of lightweight

methods enabling better versatility, boosted fault tolerance, and a lot more reliable source

application (Chaieb, Sellami and Saied, 2023). Nonetheless, regardless of these benefits, the

procedure of refactoring monolith architecture right into microservices architecture stays

extremely intricate, calling for methodical disintegration approaches as well as detailed

assessment techniques to ensure efficiency enhancements (Seedat et al., 2023).

This research study intends to review the refactorability of transitioning monolith systems right

into microservice systems by examining code intricacy scalability, latency plus system

maintainability. The technique utilized in this research study includes regulated movement

experiments where a single system is significantly taken apart right into microservices adhering

to the finest methods in component as well as solution orchestration (Nitin et al., 2023).

Different building patterns such as Domain-Driven Design (DDD) Strangler Fig Pattern and

also Service Decomposition based upon service capacities are discovered to evaluate their

efficiency in microservices fostering.

To accomplish an extensive contrast both qualitative as well as measurable efficiency metrics

are made use of. The research takes a look at code intricacy (Maintainability Index, Cyclomatic

Complexity) system latency, demand handling capability, and also mistake resistance.

Empirical examinations are carried out making use of benchmarking devices such as JMeter

for lots screening as well as profiling structures for examining dispersed purchase expenses.

By implementing tension examinations plus regulated scalability experiments this study

examines exactly how microservices styles affect action time, straight scaling effectiveness as

well as general system durability (Chaieb, Sellami and Saied, 2023).

A considerable emphasis is placed on disintegration methods, making sure that solution limits

are well specified as well as do not present unneeded interaction expenses that can adversely

influence efficiency. The research study additionally attends to usual movement obstacles such

as data source refactoring solution exploration, API Gateway assimilation, and also reliance

administration (Seedat et al., 2023)

Additionally this research study follows a speculative method, using a real-life study to

determine the effect of microservices movement on software program refactorability. The

outcomes add to a structured decision-making structure for companies thinking about the

monolith-to-microservices movement giving understandings right into when as well as just

how such a change must be taken on. By developing sensible standards for solution

disintegration, efficiency adjusting plus building optimization, this research study uses a

thorough point of view on modern-day software application scalability obstacles plus services.

25

4. 2 Proposed Framework/Model/Technique

4.2.1 Architectural Design of Monolith vs. Microservices (Strangler Fig Pattern)

A monolithic architecture is made up of a single application. All functionality is

managed within a single application, which means that user interface, business logic and

database access code are held together (Barzotto and Farias, 2022). When an application is first

developed, a monolithic approach is simpler to develop, test and deploy. However, monolithic

systems create serious issues as the application grows. A monolithic application is tightly

coupled, change deployments become increasingly inflexible as the code base grows.

Development teams are imposing a slowdown in the release cycles and require increasingly

complicated deployment processes (Chaieb, Sellami and Saied, 2023). A monolithic

application imposes a linear scalability constraint, there is no smoothing of workloads as the

modules are dependent on a shared codebase, lead all CI/CD pain points to be exaggerated

since a small code change in a single module necessitates building and deploying again the

entire monolithic system rather than being able to scale application components independently

of one another. Moreover, as more developers work on the same codebase, merge conflicts,

regression issues, and technology constraints become common issues and prevent

experimentation with new technologies, which can impede innovation and leave organisations

competing in an ever-changing landscape of new framework implementations (Chaieb, Sellami

and Saied, 2023).

Modern software systems are moving towards microservices-based architectures to achieve

scalability, modularity, and independent deployment. Rewriting the whole monolithic system

in one go is infeasible and a high-risk endeavour for most enterprises. In this study, the

monolith system was integrated into microservices progressively using the Strangler Fig

Pattern. The Strangler Fig Pattern is a migration strategy that allows for incremental refactoring

from monolith components to extract independent microservices. This gradual approach

enables developers to refactor the system without affecting system functionality (Seedat et al.,

2023). The pattern derives its name from the growth habit of strangler fig trees: as strangler fig

trees grow around their host, the monolith and microservices live alongside each other,

allowing the system to grow (in functionality) and die (deprecated functionality) incrementally

rather than drastically in a big bang cutover.

The migration process can be broken down into the following three phases. The monolithic

components are analyzed and prioritized by business functionality and system dependencies

for extraction. User management, product catalog, order processing and payments were

identified as some of the most critical modules to extract in the first phase. Microservices are

built alongside the monolithic parts, running in parallel to them and operating on a single

database. All traffic is moved to a router, which starts to redirect it to microservices where

possible, while the monolithic application continues to serve legacy traffic. As stability and

performance are further validated, more and more traffic is rerouted from the monolithic

system until all prioritized parts are entirely in the hands of microservices. The monolith is

retired at the end of the process.

26

Figure 4.1: Monolithic vs. Microservices Transition (Source: (Monoliths to Microservices using the Strangler Pattern, no

date))

The monolithic system proceeds to be replaced with microservices as the system remains stable

as shown in Figure 4.1. The migration journey comprises three key phases. Firstly, monolithic

components are analyzed and prioritized based on business functionality, and system

dependencies are extracted. Key modules such as 1. user management 2. product catalog 3.

order processing 4. payments are identified as initial candidates to be migrated. Secondly,

microservices are implemented in conjunction with the Monolith and run parallel with a

common database. By a routing mechanism, traffic is routed to microservices wherever

possible, while the monolithic appstem are proven, the traffic is gradually moved away from

the monolithic system till the key components are replaced, and the monolithic system is

decommissioned.

Once microservices are in place, they only talk to each other through RESTful APIs and not

through in-memory function calls as in the monolithic architecture. The system doesn't use

asynchronous messaging tools such as Kafka or RabbitMQ or gRPC, so the communication

model is synchronous and relatively simple. Each microservice implements one business

function and exposes a set of well-defined HTTP endpoints such that other services can call

them. The following services have been refactored out of the monolithic system:

• API-Gateway: The service required to forward all requests coming to the microservice

to other services.

• User Service: Authentication, registration and user profile management.

• Product Service: Product details, inventory and product categorisation management.

• Order Service: Order management and tracking management.

• Cart Service: The service where basket information and related transactions are kept.

Sharing a common relational database system, this pattern enables all microservices to connect

to a single database instance; concurrency is ensured without event-driven data replication.

Nonetheless, with higher service coupling, as well as potential bottlenecks for concurrent

27

queries to a central database, there are trade-offs. Database index, connection pool, and query

optimization are some of the applied solutions for these challenges.

Figure 4.2: Structural Differences Between Monolithic and Microservices Architecture

As shown in Figure 4.2, a monolithic architecture is split into multiple services in the

microservices architecture, with application components (microservices) that are

independently managed and operated, but still share the same database - PostgreSQL, to handle

all of the data. The traditional monolithic approach (on the right) combined all the

functionalities into a single application, Monolith with 8080 port. consisting of user

management, product catalogue, cart, and order processing that works together with the

database. This design has various disadvantages such as scalability limitations, complex

deployments, and tight coupling between components.

On the left we have the refactored application into the services (User with port number of 8082,

Product with port number of 8083, Cart with port number of 8084, Order with port number

of 8084), where each microservice runs in its own scope and have own deployment. There is

API-Gateway with port number of 8081 (Microservices Pattern: Pattern: API Gateway /

Backends for Frontends, no date) in front of them that acts as an entry point to clients. API

Gateway handles requests from clients and forwards them to the specified microservice.

Another change we can notice is that the microservices are using the single shared database

created in PostgreSQL, in this case we can leverage the consistency in regards of the data that

database will provide and it keeps refactoring/migration simpler as well.

 This architecture adopts the Strangler Fig Pattern to incrementally replace the monolithic

system component by component with microservices. The routing of traffic to the

microservices is done progressively through the API Gateway until there is no traffic hitting

the monolithic system and it can be decommissioned. This allows for a safer migration path

but also introduces additional complexity. Increased overhead handling APIs, potential for

database contention issues, or having to deal with transactions across services.

28

4.2.2 Service Decomposition Strategy

In the microservices architecture field, selecting an appropriate service decomposition

strategy can help improve scalability and maintainability, and align development efforts with

business requirements. Various service decomposition strategies have been proposed and put

to practice.

A popular strategy is decomposing by business capability which is an approach to follow when

designing and implementing Microservices. This simply refers to what a business does in order

to generate value i.e. its responsibilities. For example, an E-commerce application might have

services such as order management, payment management and so on. Decomposition of

applications by business capability ensures the services are aligned with business processes

(Strangler fig pattern - AWS Prescriptive Guidance, no date)

Another phenomenon is one alternative method that is very popular is decomposition by

subdomain. This can be seen as an application of Domain-Driven Design (DDD). The key

characteristic of this approach is to identify the different subdomain of the application domain

and create microservices corresponding to the subdomains. This approach maintains the

domain’s integrity but de-correlates the different subdomains so that each subdomain can

function independently of other subdomain. A practical example might be of a banking system

where separate services might be built for user accounts, processing transactions and loans;

each of these then work as independent applications unto themselves and encapsulate the entire

domain knowledge (Strangler fig pattern - AWS Prescriptive Guidance, no date)

The Strangler Fig Pattern provides a practical strategy to incrementally migrate from

monolithic architectures to microservices. The Strangler Fig Pattern proposes that incremental

refactoring of monolithic components into microservices, allows the integration of new

functionalities to work alongside legacy code while minimizing disruption. Once enough new

functionality has been refactored into microservices, monolith core dwindles away and is

replaced by microservices. This is an extremely useful strategy for large and complicated

systems to rewrite everything from scratch would be time consuming and high risk (Strangler

fig pattern - AWS Prescriptive Guidance, no date)

Furthermore, another approach is decomposition by transaction, in which the services are split

up based on transactional boundaries. This way, a service can manage its own transactions

without necessarily having to meddle with distributed transactions and reduce the transactional

complexity that comes with it. Such method increases the consistency of data within a service.

(Strangler fig pattern - AWS Prescriptive Guidance, no date)

When writing about these strategies, one option is to add some visual approaches. For example,

a comparative table listing the characteristics, pros, and cons of each decomposition strategy

could help summarize information for readers. Diagrams showing the evolution of a monolithic

software architecture into a microservices software architecture through Strangler Fig Pattern

could also illustrate moves from a practical aspect.

In conclusion, choosing the right decomposition strategy is critical to the successful adoption

of a microservices architecture. By leveraging these strategies, organizations can decompose

monolithic systems into more agile and scalable microservices-based architectures.

Table 4.1: Comparison of Service Decomposition Strategies(Chaieb, Sellami and Saied, 2023)

29

Decomposition

Strategy

Ease of

Implementation

Risk Level

Scalability

Data

Management

Complexity

Business

Capability-

Based

Medium

Medium High

Medium

Domain Driven

Design (DDD)

Hard Medium High Hard

Event-Driven

Decomposition

Medium High High Hard

Strangler Fig

Pattern

Easy Low High Medium

Service decomposition is fundamental to the microservices architecture and can be achieved in

different ways such as business capability-based decomposition, domain-driven design (DDD),

event-driven decomposition, and Strangler Fig Pattern. Business capability-based

decomposition, for instance, ensures that microservices align with underlying business

functions, which means that they can often be easily developed and maintained by teams

specializing in the target business capability, though it may sometimes be challenging to

implement from unclear service boundaries. Meanwhile, DDD provides modularity and

generally aligns with specific domain context for easier long-term warehouse management but

requires deep business domain knowledge, whereas event-driven decomposition enables agile

asynchronous communication across microservices but makes it harder to ensure data

consistency in the system. The Strangler Fig Pattern is chosen because it enables low-risk and

incremental migration of microservices. Microservices can be incrementally extracted from

monolithic application while the monolith continues to operate fully. In contrast to a big-bang

migration which can be highly risky and hard to implement, microservices can be gradually

implemented with the monolithic system, alongside rollback paths if any needs arise.

Furthermore, the capabilities of the monolith can continue to function during the migration and

be modernized (Strangler fig pattern - AWS Prescriptive Guidance, no date). Overall, the

Strangler Fig Pattern achieves a balance of ease of implementation, ease of scaling services up

and down, and low operational risk can be seen in Table 4.1.

4.2.3 Data Management (Shared Database Model)

Handling Data in a Microservices Architecture Data management in microservices is a

key concern and it can have a substantial impact on the performance and scalability of your

system. Most approached strategy is database-per-microservice, where each microservice has

its database, to enforce loose coupling. However, it leads to problems such as data

inconsistency and ACID violation. Shared Database is an alternative approach, where multiple

microservices can access the same database using a single relational database. A shared

database has obvious benefits such as a simplified data management system. With the use of a

single relational database, services can access freely other service’s data, without the need for

an inter-service communication channel, with the use of local ACID transactions to achieve

consistency and integrity of their data (Microservices Pattern: Pattern: Shared database, no

date).

However, using a shared database in a microservices architecture contradicts the principles of

microservices and can potentially undermine their key benefits such as scalability, resilience,

and independence. By tightly coupling services through a shared database, you risk introducing

30

a single point of failure and making services interdependent. This means that if one service

modifies the schema of a table, it could potentially break other services that depend on that

table. So, using a shared database requires careful consideration and management to avoid these

challenges.

An Entity-Relationship Diagram (ERD) represents the data structure. An Entity-Relationship

Diagram (ERD), is a data modeling technique that graphically illustrates an information

system's data requirement and relationships between data. An ERD is a conceptual and

representational model of data used to represent the data structure used. An ERD is a diagram

that shows the relationship of entity sets stored in a database. In other words, ERDs illustrate

the logical structure of databases. At first look, an entity relationship diagram looks very similar

to a flowchart. ERD diagrams are commonly used in conjunction with a data flow diagram to

display the contents of a data store. It is also the blueprint for designing and debugging

relational databases.

Figure 4.3: Entity Relationalship Diagram (ERD)

In the given ERD (Figure 4.3), you can see entities like Users, Products, Orders, and Carts,

along with their attributes and relationships. For example, the Users entity has attributes such

as user ID, name, and email, while the Orders entity has order ID, date, and total amount. The

relationships between these entities are also shown, such as a user placing an order or adding a

product to a cart.

In conclusion, while having a shared relational database can simplify managing data and

guarantee consistency in a microservices architecture, it should be considered very carefully.

Balancing the benefits of simplified data access and strong consistency against the potential

31

challenges of increased service coupling and reduced scalability is key to deploying

microservices effectively.

4.2.4 Deployment and Scaling

The microservices architecture is deployed using docker, ensuring that each service

runs in an isolated container and interacts with each services through an internal docker

network. The central Postgres database also runs in a central location and all instances of the

microservice communicate through an efficient connection pool to ensure there is no bottleneck

during high user traffic. Git was used as the Version Control System (VCS) for managing

source code and automation of deployment builds. Git VCS enables CI/CD pipelines to fully

automate building/testing and deployment processes. For live monitoring, Prometheus was

used to scrape and collect system metrics such as CPU usage, memory usage, and database

query performance. Prometheus provides an overview of resource metrics and scalability

graphs (Jani, 2024). However, docker also provides in-built monitoring capabilities and

metrics. I am able to monitor container resource usage and performance metrics. This built-in

docker features are able to suffice my current needs however, Prometheus can still be integrated

in the future if my application demands higher levels of observability and advanced monitoring

features.

4. 3 Methodology

Describe in detail how the experiments are performed. In the first part, provide an overview of

the process/methodology.

4.3.1 System Design and Implementation

The system is constructed on Spring Boot framework utilized as a backend framework,

PostgreSQL used as a relational database and Postman used as application for API testing.

Spring boot framework provides light-weight, scalable components to process the request,

dependency injection and service orchestration to create RESTful micro-services. Spring data

JPA module easily integrates and we are using it to persist data into the PostgreSQL database.

It follows a layered architecture by splitting the app into controller, service and repo layers.

PostgreSQL is used in the database for database management for maintaining all the relational

data in the database. Because each microservice must share the database for relational data

integrity and consistency. So the persistent interaction with the database for each microservices

is maintained through the Spring Data JPA repositories which can be used to execute the

queries on the tables data & through the connection pooling using the Spring Data JPA it helps

in doing the optimal management of connection with the database. This is by how those

schemas of the database are defined through the Entity-Relationship model. So that we can

able to maintain the data for user, product, order and cart consistently across the services. The

system is build with REST API style in where each microservices only exposes a static set of

endpoints that handles the requests. HTTP methods are standard in REST API. Every

interaction is stateless, The behavior of Microservice REST API is really predictable. A

microservice defines one or more well-known endpoints that are used to operate CRUD. I will

describe some main endpoints below:

32

Table 4.2: REST API Endpoints for both Monolithic and Microservice Architecture

Service Endpoints Method Description

User Service /user POST Create User

User Service /user GET Login User

User Service /user/{userId} PUT Update User

User Service /user/{userId} DELETE Delete User by Id

User Service /user/{userId} GET Find User by Id

Product Service /products GET Get all Products

Product Service /products/{productId} GET Get Product by productID

Product Service /products/{categoryId} GET Get Product by categoryID

Product Service /products POST Add a Product

Category Service /categories GET Get Categories

Category Service /categories/{categoryId} GET Get Category by categoryID

Category Service /category POST Add category

Address Service /address/{addressId} GET Get address by addressID

Address Service /address/{addressId} POST Add address by userID

Address Service /address/{userId} PUT Update address by

userID

Address Service /address/user/{userId} GET Get User Address by userId

Cart Service /cart/{cartId} GET Create a Cart with userId

Cart Service /cart/{productid}/item Add Item to Cart

Cart Service /cart/{userId} DELETE Delete Cart by userId

Cart Service /cart/{cartId}/{cartItemId} DELETE Delete CartItem from Cart

given cartIdemId

Order Service /orders POST Create an order

Order Service /orders/{orderId} GET Get Order by orderId

Order Service /orders/{orderId}/total GET Get Total Amount by orderId

Order Service /orders/{orderId}/status PUT Update Order Status by

orderId

As showed in Table 4.2: Comparison of Monolithic and Microservices API Endpoints the

BASE URL API is the only difference between them, while all REST APIs have the same

structure. Because of this, the transition from monolith to microservices is fairly seamless, and

monolith services can continue to make the same requests but instead benefit from the ability

to independently scale and deploy microservices, and by changing the main URL only the

existing consumers of this API can communicate seamlessly with monolithic or microservices

systems, it provides backward compatibility to prevent breaking changes, and facilitates the

migration process. For request testing and Validation of the API steps.

For request testing and validation of the API steps. Perform and validate REST API calls,

make various HTTP request methods, and validate the response as well We write postman

collections for API testing, which is done to make sure each of the endpoints is working as

expected. The following is an excellent designed and implemented RESTful microservice

architecture with Spring Boot and an example of using PostgreSQL for TRU data persistence,

database optimization strategies, and API integration tests with the testing framework.

33

4.3.2 Evaluation Setup

The assessment of the system is designed to test how well the microservices architecture

performs in terms of scalability as well as how efficient it is compared to the previous

monolithic implementation. The primary objective is to assess the performance of the

microservices for concurrent requests, database operations, and the consumption of system

resources based on different loads. The work has the following definition when it comes to the

evaluation. Deploy in a deployed-controlled environment both architectures. Simultaneously

co-host both the architectures in a machine and Perform Performance testing on API response

time and track and monitor the resource consumption.

System is containerized in Docker so all of Microservices are hosted in isolated Docker

container and communicated to each other with shared PostgreSQL database. To construct the

test for experimentation, a personal computer with an 8-core CPU, 16GB memory and SSD

storage was used, providing identical benchmarking conditions. We collect logs for all API

including the database operation, and there are accumulated system metrics through

Prometheus but not limited to CPU utilization, memory- usage, time spent on the database

query and throughput of requests.

Using Apache JMeter, a series of performance tests are performed in which varying no. of users

accessing the project API and making their respective requests are made to study how the

system responds to different types and volumes of traffic. Some of the scenarios that are

implemented as a test include, to a huge amount of simultaneous requests. Performance is

evaluated based on factors such as the time it takes to handle a request, the time it takes to pass

a query to the database, system latency, and the time to process the request, etc. It also assesses

if the increased communication creates further database bottlenecks, through the common

PostgreSQL database to serve multiple microservices concurrently executing their transactions.

Additionally, there are Git-based VCS that it use to maintain the deployments and code changes

during the evaluation time period to keep the reproducibility and consistency of the tests

contained. They were able to analyze the performance information that they gathered to show

if the move from monolithic architecture to microservices achieved real benefits in scaling,

fault tolerance and efficiency. By evaluating the system metrics, this study provides a

quantified evaluation of the benefits and related costs of migrating from monolith to

microservices.

4.3.3 Case Study/Experimental Setup

The aim of this study is to measure the performance difference by evaluating some key

performance metrics for monolithic and microservices architectures at realistic workloads. The

performance metrics are CPU utilization, response time, and memory consumption as I

mentioned before in Research Questions part. These metrics will help us understand how each

architecture behaves under different loads. The second key aspect is scalability. In this study,

I’m interested to know what are some of the scalability limitations (if any) of both architectural

styles by looking at how well each architecture is able to support increasing user requests.

The third key aspect is refactoring effort. The refactoring effort is quantified by the time spent

for system decomposition, code refactoring, and debugging based on firsthand experience.

Moreover, I try to use help of peer-reviewed studies. The technical challenges are the internals

of the refactoring effort. The technical challenges are identified by looking at some of the

problems that may arise during migration such as those associated with database contention,

34

inter-service communication overhead, containerization, and some others. Here, the major

technical challenges encountered during the refactoring process is also explored. The hardware,

infrastructure and operational cost for both architectures together with their maintenance cost

are the economic aspects to be evaluated by this study. These findings are supported by

peer reviewed papers and information made available from online resources. These will be

discussed on Results and Discussion (Results and Discussion) part more.

All experiments are conducted on a MacOS-based machine with 16GB RAM and an 8-core

CPU, keeping a fixed experimental setup for consistency. Both architectures are running a

cluster of Dockerized microservices, with each microservice deployed in its own Docker

container and the PostgreSQL database being a single point of entry. In such a setup,

differences in performance due to architectural differences rather than the hardware. The screen

shot of the case study application that is used for testing is simple e-commerce application

which has user registration, browse products, manage cart, place order, and make payment.

WIDE is an application that simulates a real-world workload so that you can see how monoliths

and microservices will perform in a real-world environment.

Three testing scenarios are executed to evaluate system performance in detail:

• Scenario 1: Low Traffic Load: This simulates a single user interaction with the system

to set a baseline performance.

• Scenario 2: Moderate Concurrent Requests: Simulates several users visiting

products, adding items to their cart, and making orders at the same time.

• Scenario 3: Stress test with heavy traffic: Creates thousands of simultaneous

requests for the system and evaluates its scalability, responsiveness and resource

consumption in extreme load conditions.

An assessment which uses Apache JMeter to perform simulation of user action and aggregate

concurrent HTTP requests, and delivers real-time feedback on system performance by means

of response times and requests per second. Besides, Docker’s default command docker stats

is used to follow CPU, Memory, and Network usage from each microservice as well as

monolithic application running under it. We have integrated Prometheus so that we can capture

high level metrics such as throughput, API execution times, database query execution times,

and resource allocation. It analyzes logs to identify bottlenecks, service failures, and latency

differences between architectures.

The study anticipates that microservices will exhibit better scalability under high-traffic

scenarios (Scenario 3) as they can spread the workload across independently deployable

services. Nonetheless, due to the inter-service communication overhead, microservices may

face increased latency in processing complex transactions relative to the monolithic system.

In refactoring effort, monolith-to-microservices is expected to take substantial development

time, as system decomposition creates problems of service orchestration, API management and

database consistency. By quantifying migration effort, this study aims to identify if the long

term benefits of modularity and independent scalability can sufficiently offset the initial

complexity of migration.

From a cost perspective, microservices incur new costs related to container orchestration,

service monitoring, and networking overhead, which should be weighed against their utility in

providing improved fault tolerance and maintainability. The study expects that microservices

35

can drive higher infrastructure and operation costs, but they bring long-term efficiency gain

through elasticity of resources and independence of services.

This assessment would offer a quantitative comparison between the two systems showing the

benefits and trade-offs of employing microservices-based architecture compared to the

monolithic-based architecture.

4. 4 Evaluation Criteria

The comparison between monolithic and microservice web architectures was made based on

six criteria: performance, scalability, refactoring effort, cost, fault tolerance, and

maintainability. Performance metrics include response time, throughput, CPU utilisation, and

memory consumption. Monolithic architectures have better latency if there is low or medium

traffic because it does not have the overhead of inter-service communication, but as

concurrency increases, microservices come into their own as load gets distributed among

several independently deployed services. This was also observed in a performance and

scalability evaluation of monolithic and microservices-based applications where microservices

performed better with increasing high concurrency (Blinowski, Ojdowska and Przyblek, 2022).

 Scalability: Monolithic systems are usually scaled vertically i.e. they rely on increasing the

capacity of the single server by increasing CPU and memory. This has limits and can also get

very expensive. Microservices architectures on the other hand allow horizontal scaling i.e.

independent services can be scaled independently based on their demand. This repackaging

allows microservices architectures to be able to scale better, have better fault tolerance and

faster updates. Hence, this architecture would suit large applications and those with growing

users (Ortega, no date). The trade off is the complexity in deployment and monitoring.

Refactoring effort: The migration of a monolithic architecture to a microservices architecture

is a very large effort. It requires business functions to be split from the monolith to discrete

services, the monolithic database schema to be redesigned to split data storage concerns and

APIs to be developed to handle service communication. This requires careful planning and

execution (Blinowski, Ojdowska and Przyblek, 2022).

Cost Analysis: The following cost analysis will cover both infrastructure & operational costs

In a microservices architecture, we have multiple containers for the multiple services that we

have, an orchestrator which we can deploy these containers & make them available so the

infrastructure cost is more than that of a monolithic architecture. So initially, the cost of a

microservices architecture is more than that of a monolithic architecture just to get it up &

running. But down the line, we do have individually scalable services that optimize the overall

usage of our infrastructure & increase the overall availability of our services (Monolithic vs

Microservices - Difference Between Software Development Architectures- AWS, no date).

Fault tolerance: In a microservices architecture, if one component of the system fails it would

not affect other services or the whole system. Similarly, in a monolithic architecture, a failure

in one of the modules causes a full system failure (Harris, no date).

Maintainability: A microservices architecture allows development teams to work on different

services independently as they can work on modular components. The teams can also ensure

continuous integration and continuous development (CICD) which allows faster updates of the

applications, and easier debugging. However, the deployment and monitoring complexity for

36

a microservice architecture is higher and robust DevOps processes are required to ensure

service availability (Harris, no date).

On the other hand, a monolithic architecture, is easier to manage and maintain as there is a

single codebase and a single deployable unit, but can become cumbersome as the application

grows and developers move more slowly as the application grows to avoid being breaking

changes. Monolithic systems also have tightly coupled dependencies which means that in a

monolithic system if an update is made it requires pushing the whole codebase to make the

updates. On the other hand, as a microservices application is running in multiple processes, a

particular service can be deployed without reflecting it in the other services. This makes the

monolithic systems inflexible (Harris, no date).

Table 4.3: Summary of Evaluation Metrics and Their Purpose

Category Metric How it is measured Why it matters?

Performance Response Time Measured in

milliseconds using

JMeter

Determines system

speed under load

Performance Throughput Requests processed

per second using logs

Evaluates system

efficiency

Performance CPU Utilization Percentage of CPU

used via Docker stats

Evaluates system

efficiency

Performance Memory

Consumption

RAM used per

request via Docker

stats

Indicates memory

optimization

Scalability Max Concurrent

Requests

Number of

simultaneous users

supported

Measures system

load capacity

Refactoring Migration Effort

(Hours)

Time spent

decomposing

monolith

Quantifies transition

complexity

Cost Infrastructure Cost Compute power,

hosting expenses

Compares initial vs.

long-term cost

Cost Operational Cost Monitoring,

deployment

expenses

Evaluates

maintenance costs

Reliability Failure Recovery

Time

Time taken for

recovery after failure

Measures fault

tolerance

Maintainability Debugging

Complexity

Time required to

identify and fix

issues

Compares

maintainability

challenges

37

Table 4.3 presents a high-level summary of the important attributes of various evaluation

criteria. The evaluation criteria are classified into performance, scalability, refactoring effort,

cost, reliability, and maintenance. (i) Performance is evaluated using response time,

throughput, CPU utilization, and memory utilization. (ii) Scalability is evaluated using the

maximum number of concurrent users and the level of scalability. In other words, the level of

scalability indicates vertical versus horizontal scalability. (iii) The refactoring effort is a

measurement of the effort to migrate a monolith to microservice. Therefore, this metric is only

for the comparison between the monolithic architecture and microservices architecture. We

compared the ease of migration. (iv) Cost is evaluated using the infrastructure cost and

management cost. (v) The system reliability is evaluated using the failure recovery time. (vi)

The level of maintenance is evaluated by debugging complexity.

In summary, while monolithic architectures may offer advantages in simplicity and lower

initial costs, microservices architectures provide superior scalability, fault tolerance, and long-

term maintainability. Organizations should carefully consider these trade-offs in the context of

their specific needs and resources when deciding on an architectural approach.

4. 5 Benchmark Algorithms

Study primarily evaluates monolithic and microservices architecture based on different

benchmarking methodologies and performance measurement techniques to compare the

efficiency of the two architecture styles on the grounds of performance, scalability, fault

tolerance and resource utilization. Monolithic and microservices architecture were compared

focusing on key metrics like API response times, system throughput, CPU usage and memory

usage for the applications under different loads. Apache JMeter was used to simulate realistic

workloads by performing load testing on the application and analyzing how effectively each

architecture responded to increasing concurrent requests. System was containerized using

docker for a uniform test environment and PostgreSQL was chosen for database. Performance

of the two architecture was evaluated under the same conditions.

Scalability tests - Differences in vertical and horizontal scaling In monolithic architecture,

scalability is provided by implementing increased memory capacity and solid-state drive for a

centralized machine, whereas a microservice architecture allows for multiple deployments of

the same service at once, allowing load distribution across multiple machines. This essentially

constitutes the main difference between monolithic and microservice architecture scalability.

For database performance, PostgreSQL was tested in both architecture. The intention of these

tests was to benchmark the database performance and to see how having a shared database will

affect the microservices while performing a query or processing transactions. As the

microservices have a shared database(monolithic model) we wanted to identify if there would

be any performance bottlenecks in the database and that there will not be any unnecessary cost

in terms of connection overhead caused by it. Docker Stats was used to monitor these while

resource consumption was recorded.

Fault tolerance testing evaluated the effects an individual service failure had on the system as

a whole. In monolithic architecture, failure in a key component usually causes a catastrophic

system failure, whereas in microservices, the service isolation mechanisms allow other

components to continue the execution. In this study fault handling capability in each

architecture was measured by deliberately killing the services from the execution loop and

monitoring the time it took for them to recover.

38

Resource utilization and operational cost analysis has been performed by measuring CPU and

memory usage during different load scenarios. Even though microservices can take more

system resources per transaction, their ability to distribute a load dynamically across system

instances makes them more efficient under the high load.

Figure 4.4: Vertical Scaling vs. Horizontal Scaling(Perry, 2023)

To explain the basic difference between monolithic and microservices architectures in terms of

scaling, the example in Figure 4.4 (2024) will visually depict how they each scale when under

incremental workloads. The monolithic application scales by increasing the CPU and RAM of

the bare metal server or by upgrading the hardware of the current server (i.e. vertical scaling).

Expanding the single server can even prove impossible if the machine is limited by physical

resource constraints. Furthermore, upgrading the machine to a bigger machine can be difficult

and more expensive than horizontal scaling of microservices. In Figure 4.4, the microservices

architecture represents three smaller versions of an independent service that is responsible for

handling client requests. Horizontal scaling creates numerous smaller instances of independent

services sparingly using the resources rather than using the resources as a whole (i.e. memory

and CPU). Vertical scaling is done by expanding a single machine, whereas horizontal scaling

is done by load balancing across multiple service instances. Moreover, microservices

architectures scale fault isolation since loads are diversified by services instead of reliant on an

individual service under increased network traffic.

The benchmark is providing an elaborate comparison between monolithic and microservices

architecture based on practical experimentations. The results from the experimentations will

be further discussed in Section 5 (Results & Discussion) to conclude on the overall trade-offs

between monolithic and microservices architecture.

39

Chapter 5. Results and Discussion

5. 1 Quantative Insights from System

This chapter presents the results obtained from the transition from a monolithic

architecture to a microservices-based system. The analysis is primarily driven by quantitative

performance metrics collected using Docker Stats and Apache JMeter, focusing on CPU,

memory, service startup times, and request response times under varying loads. Apache JMeter

is used to simulate concurrent user requests, allowing for a detailed comparison of the system’s

scalability, latency, and throughput before and after the transition.

Additionally, we assess the time spent on refactoring, highlighting key challenges encountered

during the transformation process. A comprehensive cost evaluation is conducted, comparing

hardware, infrastructure, and operational expenses between the monolithic and microservices

architectures. Finally, we discuss the operational complexity and maintenance overhead

introduced by microservices, evaluating its long-term implications.

5. 2 Performance Under Load: Docker Stats Analysis

This section presents the CPU and memory utilization metrics obtained from Docker

Stats during load testing of both monolithic and microservices architectures. The tests were

conducted with 1000, 2500, and 5000 concurrent users to analyze how each system scales

under stress. The results focus on resource allocation efficiency, system bottlenecks, and

performance trade-offs.

5.2.1 Monolithic System Performance

Figures 5.1 to 5.4 show the Docker resource consumption of the monolithic system in

different loads. CPU and memory utilization has been captured to illustrate how resource

consumption increases as the number of concurrent users increases. Analysis into this data

presents a good picture of the scalability and efficiency of the monolithic system. By inspecting

these metrics, it is possible to see how the monolithic architecture has been coping with the

load in given situations. Potential bottlenecks, resource consumption patterns and system

resilience capabilities will be highlighted at this stage of evaluation. Furthermore, the data helps

to show the how efficiently this system utilizes the resources when idle compared to when

during peak consumption. These observations create a good overall picture of the monolithic

system as it stands before the conversion to a microservices based system.

40

Figure 5.1: Monolith Resources in IDLE

Figure 5.1 demonstrates the base resource usage of the monolith architecture when it is in idle

state. At this point, the CPU and Memory usage is low. There are no requests at this point.

Figure 5.2: Monolith Resorcues with 1000 User Load

As shown in Figure 5.2, the CPU load increases significantly when subjected to 1000

concurrent users. The monolithic application struggles with resource allocation, leading to

noticeable CPU spikes.

Figure 5.3: Monolith Resources with 2500 User Load

Moving to 2500 concurrent users (Figure 5.3), the memory footprint starts increasing rapidly,

with the monolith showing early signs of resource saturation.

41

Figure 5.4: Monolith Resources with 5000 User Load

In Figure 5.4, I illustrate the case of the extreme load (5000 users). As expected, an increase in

resource (CPU and Memory) usage was observed.

5.2.2 Microservices System Performance

Figures 5.5 to 5.8 illustrate Docker resource utilization for the microservices

architecture. These figures provide a detailed analysis of how resource consumption varies

across different microservices under increasing load conditions. By examining CPU and

memory usage, we can assess the distribution of computational demands among individual

services, highlighting the efficiency of resource allocation and potential performance

bottlenecks. Additionally, the data offers insights into how the microservices architecture

scales in response to concurrent user requests, comparing its performance characteristics to

those of the monolithic system. This analysis helps evaluate the benefits and trade-offs of

adopting a microservices approach in terms of resource efficiency, system resilience, and

overall scalability.

Figure 5.5: Microservice Resources IDLE

Figure 5.5 demonstrates the base resource usage of the microservices architecture when it is in

idle state. At this point, the CPU and Memory usage is low. There are no requests at this point.

42

Figure 5.6: Microservice Resources with 1000 User Load

As shown in Figure 5.6, the CPU load increases significantly when subjected to 1000

concurrent users. The microservice architecture struggles with resource allocation, leading to

noticeable CPU spikes.

Figure 5.7: Microservice Resources with 2500 User Load

Moving to 2500 concurrent users (Figure 5.7), the memory footprint starts increasing rapidly,

with the monolith showing early signs of resource saturation.

Figure 5.8: Microservice Resources with 5000 User Load

In Figure 5.8, I illustrate the case of the extreme load (5000 users). The system reached the

resource endpoints (CPU and memory) demonstrating the bottlenecks of the monolith

architecture.

43

5.2.3 CPU Usage Analysis

Examining CPU utilization between these architectures, with user load is a crucial

metric. As processing demands increase, the CPU consumption of both microservices and

monolithic architectures increases. But microservices CPU utilization scales uniquely. Given

the distributed nature of microservices architectures, CPU consumption can vary compared to

monolithic applications. With monolithic systems, all processing is consolidated within a

single application. In contrast, microservices systems distribute this processing across multiple

microservices, potentially incurring additional processing overhead.

Table 5.1: CPU Utilization Data

As we look in Table 5.1, we can see that when the system is in its idle state, the monolithic

system is just consuming 0.13% CPU but the microservices is consuming 0.63% CPU. This

small increase in CPU consumption for the microservices is due to overhead of running

multiple independent services, even when there is little user interactions with the system. As

the number of concurrent users increases, there are significant spikes in CPU usage for the both

monolithic and microservices architecture but for 1000 concurrent users, the CPU consumption

measures 78.20% for Monolithic architecture while it measures 79.96% for microservices. At

this benchmark point for both.

As the number of users further increases, CPU utilization in microservices starts to increase

more rapidly than in monolithic systems. At 2500 users, monolithic CPU usage is roughly

constant at 79.47% compared to microservices which take higher usage of 89.86%. This trend

also follows when running 5000 users which monolithic CPU usage is 82.46% compared to

microservices of 94.47%. These results show that although microservices have the advantage

of distributing more evenly, there is a higher computational cost involved when switching tasks

between different services.

Figure 5.9: CPU Utilization Trends

User Load Monolith CPU Usage(%) Microservice CPU Usage(%)

Idle 0.13 0.63

1000 Users 78.2 79.96

2500 Users 79.47 89.86

5000 Users 82.46 94.47

44

The graphical representation from Figure 5.9 shows another case of higher CPU demand from

both of the architectures under some load. The monolithic architecture exhibits a much

smoother curve when handling CPU usage, gradually increasing going into higher user

requests. Meanwhile, Microservices show a gradual and steeper curve, meaning that the more

users that are trying to access the system, more CPU resource is used in an exponential way.

This demonstrates one of the problems with microservices, which are processing overheads.

Compensating increased CPU usage for better system scalability.

This analysis of CPU utilization reveals that monolithic systems exhibit a stable and anticipated

CPU workload, while microservices scale functionality, but at a higher CPU workload cost.

The numerical data of the CPU information is shown in Table 5.1, which illustrates how

microservices require increasingly more processing power as the load increases. On the other

hand, Figure 5.9 depicts this data graphically and confirms this trend, indicating that the

scalability provided by microservices suffers from increased resource demand. This suggests

that although greater activate scalability is offered in combination with the advantage of

distributing workloads, without additional optimizations, such as load balancing mechanisms,

caching strategies, and optimized inter-service API calls, the CPU overhead could lead to

undesirable server utilization or additional costs. In the future, further work should be

completed to better identify how intelligent autoscaling policies and optimized microservices

communication models could further improve system performance while offering this level of

scalability.

5.2.4 Memory Usage Analysis

The evaluation of memory utilization between monolithic and microservices

architectures provides crucial insights into how each system manages memory under increasing

load conditions. Since microservices operate in a distributed manner, memory allocation and

consumption behave differently compared to a monolithic system, where all processes share a

single memory space..

Table 5.2 : Memory Utilization Data

From Table 5.2, it is evident that at an idle state, the monolithic system consumes 2.37GB of

memory, whereas microservices require slightly more at 2.56GB. This difference arises

because microservices run multiple independent services, each maintaining its own memory

footprint, even when no user requests are being processed. As the system load increases to

1000 users, monolithic memory usage rises modestly to 2.42GB, while microservices require

2.99GB. The nearly 0.6GB difference at this stage indicates that microservices allocate more

memory per service, leading to higher overall consumption.

At 2500 users, the memory disparity becomes more pronounced, with monolithic usage

increasing to 2.77GB, while microservices escalate sharply to 4.00GB. This sharp increase

reflects the distributed architecture’s demand for additional memory to support concurrent

User Load Monolith RAM Usage (GB) Microservice Total RAM Usage (GB)

Idle 2.37 2.56

1000 Users 2.42 2.99

2500 Users 2.77 4.0

5000 Users 3.77 5.06

45

service execution, inter-service communication, and in-memory data storage for independent

services. Finally, at 5000 users, monolithic memory usage peaks at 3.76GB, while

microservices reach 5.06GB, reinforcing the trend that microservices demand significantly

more memory as concurrency levels increase.

Figure 5.10: Memory Utilization Trends

The graphical representation in Figure 5.10 further illustrates this trend, showing the difference

in how memory is consumed by monolithic and microservices architectures at increasing user

loads. While monolithic memory usage increases gradually, following a more controlled

growth pattern, microservices demonstrate a steeper rise, particularly beyond 2500 users. The

increasing gap in memory utilization suggests that while microservices offer scalability

advantages, they also impose a significant memory overhead that must be managed efficiently.

One key factor contributing to the higher memory consumption in microservices, as seen in

Figure 5.10, is service isolation. Unlike monolithic systems, where all components share the

same memory space, each microservice runs as an independent process, often requiring its own

memory allocation for execution and caching. This means that instead of a single large

application utilizing memory collectively, microservices require separate memory allocations

for multiple instances, leading to greater overall consumption. Additionally, microservices rely

heavily on inter-service messaging and API calls, which further increase memory overhead as

data is transmitted and temporarily stored between services.

In conclusion, Table 5.2 and Figure 5.10 together highlight the fundamental differences in

memory consumption between monolithic and microservices architectures. While monolithic

systems maintain a more stable and predictable memory footprint, microservices exhibit a

steeper rise in memory demands as user concurrency increases. Table 5.2 provides numerical

evidence of this growth, showing that microservices require almost 35% more memory than

monolithic systems at 5000 users. Meanwhile, Figure 5.10 visually illustrates the increasing

divergence in memory usage, emphasizing the impact of distributed architecture on resource

allocation. These findings suggest that while microservices enable better scalability and

modularity, they require careful memory optimization strategies, such as improved caching,

memory-efficient service orchestration, and resource pooling, to mitigate excessive memory

46

overhead and ensure sustainable performance at scale. Future optimizations should explore

techniques like memory-aware autoscaling and improved garbage collection mechanisms to

enhance efficiency in microservices architectures.

5. 3 Performance Under Load: Response Time and Throughput Analysis

In this section, we analyze the performance of the Monolithic and Microservices

architectures under varying user loads, focusing on response time and throughput. Response

time measures how quickly the system processes requests, while throughput quantifies the

number of requests handled per second (Chen et al., 2024). To evaluate these metrics, Apache

JMeter (Apache JMeter - Apache JMeterTM, no date) was used to simulate concurrent user

requests at 1000, 2500, and 5000 users. The collected data provides insights into how each

architecture scales under increasing demand.

The performance evaluation was conducted using various system services, including Update

Order Status, Update Address, Get Total Amount, Get Products, Get Order, Get Categories,

Get Address, Create a Cart, and Add Item to Cart, as shown in Table 4.2. These services

represent critical system operations, and their performance under different load conditions

highlights how efficiently each architecture handles increasing concurrency.

5.3.1 Monolithic System Performance

This subsection presents the response time and throughput results for the Monolithic system

under different user loads. Apache JMeter was used to simulate concurrent user requests at

1000, 2500, and 5000 users, capturing the system’s performance metrics. The figures below

illustrate the results obtained from the tests.

Figure 5.11: Monolithic System Response Time and Throughput Under 1000 User Load

The first test was conducted with 1000 concurrent users. The system’s response time and

throughput values at this stage are recorded in Figure 5.11.

47

Figure 5.12:Monolithic System Response Time and Throughput Under 2500 User Load

For 2500 concurrent users, the system’s response time and throughput were measured again to

observe performance changes as the load increased can be seen in the Figure 5.12.

Figure 5.13: Monolithic System Response Time and Throughput Under 5000 User Load

The final test was performed with 5000 concurrent users, capturing the system’s response time

and throughput under the highest load condition can be seen in the Figure 5.13.

This section only presents the recorded results for the Monolithic architecture under different

loads. A comparative discussion of these results with the Microservices architecture is provided

later in Section 5.3.3.

5.3.2 Microservices System Performance

This subsection presents the response time and throughput results for the Microservices

architecture under different user loads. Apache JMeter was used to simulate concurrent user

requests at 1000, 2500, and 5000 users, capturing the system’s performance metrics. The

figures below illustrate the results obtained from these tests.

Figure 5.14: Microservice System Response Time and Throughput Under 1000 User Load

48

The first test was conducted with 1000 concurrent users. The system’s response time and

throughput values at this stage are recorded can be seen in Figure 5.14.

Figure 5.15: Microservice System Response Time and Throughput Under 2500 User Load

For 2500 concurrent users, the system’s response time and throughput were measured again to

observe performance changes as the load increased can be seen in Figure 5.15.

Figure 5.16: Microservice System Response Time and Throughput Under 5000 User Load

The final test was performed with 5000 concurrent users, capturing the system’s response time

and throughput under the highest load condition can be seen in in Figure 5.16.

This section only presented the recorded results for the Microservices architecture under

different loads. A comparative discussion of these results with the Monolithic architecture is

provided later in Section 5.3.3.

5.3.3 Comparative Analysis of Response Time and Throughput

In this part, we will examine Monolithic and Microservices architecture response time

and throughput graphs and discuss these architectures comparatively in terms of load levels.

The following charts show the performance of both architectures with respect to their latency

and request-handling capacity against growing concurrency.

49

Figure 5.17: Response Time vs. Users (Monolith vs. Microservices)

The response time graph (Figure 5.17) illustrates that the two architectures diverge significantly

with increasing load in terms of number of concurrent users. Average Response Time : 266

ms Free (Monolithic) vs 406 ms (Microservices) for 1000 concurrent users. When the number

of concurrent users increases to 2500, the Monolithic systems response time increases slightly

to 687 milliseconds, while Microservices system response time increases moderately to 1079

milliseconds. With the concurrent user scenario at 5000, response times continue to increase,

with Monolithic hitting its peak at 1081 milliseconds, while Microservices continue their

downward trend at 1618 milliseconds. This indicates that Monolithic systems are responding

to requests at lower latency for all loads. As per the Microservices architecture, the

communication between the microservices creates an additional overhead and more roundtrips

needed to process requests, hence the slow response time. However, in a Microservices

architecture, as the request communicates with different services, it incurs an overhead of

latency due to network communication. Also from the growing gap against the two

architectures at higher load. That means, Monolithic architecture can do direct call internally

within single process and Microservices architecture incurs latency due to network

communication across distributed components.

Figure 5.18: Throughput vs. Users (Monolith vs. Microservices)

50

However, unlike response time, which can tell us about latency in requests, we would have to

use throughput to understand how many requests a system can handle in a second. Throughput

graph (Figure 5.18) shows, Monolithic system can process much more requests for every load

conditions described here. Monolithic handled 2584.6 requests per second whereas

Microservices handled 1715.3 requests per second at 1000 users. Although Monolithic had its

best top speed of all —2934.3 requests per second— at 2500 users, Microservices faced an

unexpected fall of 1618.1 requests per second and this indicates that there is some bottleneck

somewhere in the Microservices implementation Monolithic throughput fell slightly from

2678.0 to 2634.8 requests per second at 5000 users, while Microservices was able to recover

to 2114.4 requests per second Microservice architecture throughput throughput fell as we reach

2500 users, and this indicates that overhead of inter-service communication, resource

contention or inefficient load distribution matter and become significant enough impacting the

performance of Microservice architecture. The Monolithic architecture appears to work for all

loads very nicely. Well, Microservices are a tough one to crack on while loads are moderate

but seem to work alright while under extreme levels of users.

The comparison between Monolithic Architecture and Microservices Architecture makes it

clear some performnace trade-offs are involved. One clear trade-off is Monolithic architecture

is way better on response time . Which Monolithic avoiding overlapped overhead of

distributed service calls. Also, Monolithic achieves a higher throughput than in all scenarios

including the fact that it means that the same resources=processor configuration have a greater

number of requests per second from the monolithic end. Though Latency crumbles and

Throughput wobbles It is the scalability characteristic of microservices architecture, That pays

off in the long term. Look at the drop in throughput at 1000 users and recover of throughput at

5000 users and this also indicates once service orchestration has been optimised, resource is

more aligned and communication overhead is reduced microservices architecturee which

consists of small services could serve requests in a more effective way in the high loaded

system.

This shows that Monolithic systems are more suitable for processing individual requests,

whereas Microservices, while being able to scale better, need to do more work in optimizing

communication and load balancing. Microservices shows this drop in throughput at 2500 users

but tells me that bottlenecks exist and must be dealt with at a service level through caching,

asynchronous messaging, et cetera. On the other hand, the Monolithic architecture provides a

constant operation and therefore manifests itself to be efficient for the system which does not

demand the fully distributed processing.

5. 4 Refactorability Time & Challenges

Refactoring a monolithic application into a microservices architecture is a time-

consuming and complex process that involves service decomposition, database restructuring,

API communication design, deployment reconfiguration, and testing. Unlike building a

microservices-based system from the ground up, refactoring requires careful extraction of

tightly coupled components, ensuring they function independently while still maintaining

system integrity. The transition demands significant time investment at each phase, as shown

in below Table 5.3.

51

Table 5.3: Time Spent Comparison (Monolith vs Microservice)

Stage Spend Time on

Monolithic (hours)

Spend Time on

Microservices

(hours)

Service Deployment & Code Structuring 6 10

Database Design & Implementation 4 6

API Development & Communication 2 4

Deployment & Infrastructure Setup 2 5

Testing & Debugging 3 5

As can be seen in Table 11, the service development and code structuring phase is one of the

most time-intensive aspects of refactoring. While a monolithic system typically requires six

weeks to develop as a single, unified codebase, the microservices version extends this

timeframe to ten weeks. This increase in time is primarily due to the need to define service

boundaries, separate business logic, and design independent service interactions. Unlike

monoliths, where components communicate directly through internal function calls,

microservices require well-defined API contracts, inter-service communication protocols, and

fault isolation mechanisms. Additionally, service decomposition requires careful refactoring to

prevent circular dependencies and minimize data duplication, further increasing the time

required for this stage.

The database design and implementation phase, as presented in Table 5.3, also exhibits a

significant difference in time allocation. Monolithic applications typically require four weeks

for database design, as they rely on a single centralized database that serves all system

components. In contrast, microservices require six weeks due to the adoption of the Database

per Service pattern, which involves partitioning data across multiple independent databases.

This shift presents challenges related to schema design, ensuring referential integrity, and

implementing eventual consistency mechanisms. Unlike monoliths, where data consistency is

managed within a single database transaction, microservices often rely on distributed

transactions or event-driven synchronization models, increasing the complexity of database

implementation.

As can be observed in Table 5.3, API development and inter-service communication take twice

as long in a microservices architecture compared to monolithic systems. In a monolith, API

calls occur internally within the same process, typically requiring two weeks to integrate.

However, in a microservices-based system, APIs must be carefully designed to enable service-

to-service communication, extending development time to four weeks.

The testing and debugging phase, as demonstrated in Table 5.3, also shows a considerable

increase in time spent when transitioning from a monolithic to a microservices system. While

monolithic applications can be tested within three weeks, microservices require five weeks due

to the distributed nature of services and the need for additional validation techniques.

Monolithic testing focuses on unit tests, integration tests, and end-to-end functional validation,

all within a single execution environment. In contrast, microservices testing must account for

service isolation, contract testing, API compatibility, and failure recovery mechanisms. Testing

52

must also validate how microservices interact under different latency conditions, network

failures, or high-load scenarios. Debugging is inherently more complex, as logs are distributed

across multiple services,

As can be seen in Table 5.3, every phase of the microservices transition demands additional

time compared to the monolithic approach. The overall time spent on microservices refactoring

is approximately 50-100% higher due to the challenges associated with service decomposition,

database migration, inter-service communication, and deployment management. This

prolonged development cycle is expected, as microservices prioritize scalability, modularity,

and maintainability, which require a well-planned architecture and infrastructure setup.

Despite the increased time investment, microservices provide significant long-term advantages

over monolithic architectures. While monoliths are quicker to develop and deploy, they present

scalability limitations as applications grow. As demand increases, monolithic applications

require vertical scaling, which can be costly and inefficient. Conversely, microservices allow

independent scaling of specific components, optimizing resource utilization and operational

costs over time. Additionally, fault isolation is significantly improved, as failures in one

microservice do not necessarily impact the entire system, enhancing system resilience.

The transition from monolithic to microservices requires careful planning and execution to

balance initial refactoring costs with long-term benefits. While the process demands substantial

time and effort, it enables organizations to build more flexible, scalable, and resilient

applications. Future optimizations, such as automated service discovery, AI-driven

orchestration, and improved microservices development frameworks, could further reduce

refactoring time, making microservices adoption more efficient.

5. 5 Hardware & Infrastructure Cost

The transition from a monolithic architecture to a microservices-based system

introduces substantial changes in hardware and infrastructure costs, affecting both short-term

expenses and long-term operational efficiency. While monolithic applications are often more

cost-effective in terms of initial infrastructure investment, microservices architectures demand

a more distributed approach, leading to increased operational overhead. However,

microservices can offer better scalability, fault tolerance, and resource optimization, potentially

reducing costs over time. This section analyzes the cost implications of both architectures,

considering hardware utilization, cloud infrastructure expenses, scalability strategies, and total

cost of ownership (TCO).

A monolithic system is typically deployed on a single powerful server or a cluster of machines,

allowing it to benefit from centralized resource allocation. Hardware costs for monoliths are

relatively predictable, as they primarily involve provisioning a fixed number of high-

performance servers to handle processing, storage, and database management. Vertical scaling

(adding more CPU, memory, or storage to an existing machine) is the main strategy for

handling increased workload. While this approach keeps infrastructure management simple, it

has limitations: hardware upgrades become increasingly expensive as systems approach their

physical limits, leading to higher costs for maintaining performance under peak loads.

On the other hand, microservices architectures require a distributed infrastructure, where

different services are deployed independently across multiple containers, virtual machines, or

cloud instances. This decentralized nature means that scaling is achieved through horizontal

53

scaling, where new instances of a service are deployed dynamically based on demand. While

this approach optimizes resource utilization and prevents overloading a single machine, it also

leads to higher hardware and infrastructure costs due to the increased number of computing

nodes required. Studies have shown that microservices consume 30-40% more resources

compared to monolithic applications, mainly due to increased inter-service communication and

the overhead of running multiple instances (Bjørndal et al., 2020).

Infrastructure costs also differ significantly between the two architectures. Monolithic systems

are often deployed on-premises or in a single cloud environment, requiring less network

management and simpler deployment pipelines. Since all components of a monolith run in a

single process space, there are fewer operational costs related to network latency, API calls,

and distributed logging. In contrast, microservices architectures require robust cloud

infrastructure, often relying on container orchestration platforms like Kubernetes to manage

deployment, scaling, and fault tolerance. While these platforms enhance flexibility and

resilience, they introduce additional expenses, including higher compute instance costs,

network bandwidth fees, and container orchestration charges.

One of the biggest cost drivers in microservices is networking and inter-service

communication. Since each microservice communicates with other services via APIs, message

queues, or service meshes, latency and data transfer costs become significant—especially when

running on cloud-based environments. A comparative study (Kamisetty et al., 2023) found that

microservices architectures increase network overhead by 20-50% compared to monoliths,

mainly due to higher API call rates and inter-service messaging costs. Additionally,

microservices deployments often require distributed logging, monitoring, and tracing solutions,

further increasing operational expenses.

Despite the higher initial cost of infrastructure, microservices offer cost advantages in the long

run, particularly in dynamic environments where scalability and fault isolation are critical.

Since each service can scale independently, organizations can optimize resource usage by

allocating compute power only to high-demand services, rather than over-provisioning

resources for the entire application. Additionally, containerized workloads allow microservices

to run efficiently on cloud-native platforms, reducing hardware dependency and enabling pay-

as-you-go cloud pricing models.

The Total Cost of Ownership (TCO) for microservices versus monoliths varies based on

business requirements, traffic patterns, and deployment strategies. A monolithic application

has a lower upfront cost, making it an ideal choice for small to medium-scale applications with

predictable workloads. However, as applications grow, monoliths become difficult to scale

efficiently, leading to higher infrastructure costs due to the need for expensive vertical scaling

solutions. Microservices, while costlier in the early stages, offer better long-term efficiency,

especially in cloud-native environments where scalable, distributed computing reduces overall

operational expenses over time ((Auer et al., 2021).

Overall, the choice between monolith and microservices depends on cost-efficiency trade-offs.

While monolithic architectures are more cost-effective in the short term, they struggle with

scalability and hardware constraints as demand increases. Microservices require higher initial

investment in hardware and infrastructure, but their flexibility, fault isolation, and optimized

resource utilization make them a viable long-term strategy for large-scale applications.

Table 5.4: Cost Analysis Table (Monolithic vs. Microservices)

54

Cost Factor Monolithic Architecture Microservices Architecture

Server Requirements Requires a few high

performance servers.

Uses multiple smaller

instances for each service.

Scaling Approach Vertical scaling (adding

more CPU/RAM to a single

machine).

Horizontal scaling (adding

more instances to distrube

load).

Database Infrastructure Single database instance for

all operations

Multiple database per

service, increasing storage

and maintenance costs.

Cloud Hosting Cost Lower initial costs but may

increase as demand grows.

Higher initial cloud cost due

to multiple services running

concurrently.

Network & Communication Minimal internal

communication costs.

Higher networking costs due

to service to service

communication.

Monitoring & Security Centralized logging and

secutiy management.

Requires distributed

monitoring tools.

Operational Complexity Lower ahead Higher complexity due to

independent service

deployment.

5. 6 Discussion

The results obtained from the transition from a monolithic to a microservices

architecture demonstrate notable differences in performance, scalability, refactorability, and

cost efficiency. As expected, microservices provided better scalability and distributed resource

utilization, while monolithic architectures showed efficiency in lower overhead costs and

simpler deployment. However, the results also revealed certain unexpected trends, particularly

in CPU utilization, database migration complexity, and refactoring time. This discussion

critically analyzes these findings, providing justifications for observed patterns and comparing

them with literature to support the interpretation.

The performance metrics analysis revealed that CPU and memory utilization behaved

differently across both architectures. As seen in Table 5.1, the monolithic application

experienced CPU bottlenecks at high concurrent loads, reaching 490% CPU utilization under

1000 users and eventually dropping at 5000 users, likely due to request failures, system

overload, or process throttling. In contrast, microservices exhibited more balanced CPU

distribution, but some services, such as the Order and Cart services, showed high resource

consumption under heavy load. This behavior aligns with findings from Bucchiarone et al.

(2020), which highlighted that while microservices enable independent scaling, some services

become performance bottlenecks due to high inter-service communication and database query

loads. The unexpected drop in CPU usage for monolithic architecture at 5000 users may be

attributed to system limitations that led to request failures, preventing full CPU utilization.

Memory utilization followed a similar trend. As observed in Table 5.2, monolithic applications

showed a steady increase in memory consumption, reaching 984MB at 5000 users, while

microservices exhibited more distributed memory allocation. However, some microservices,

particularly those handling frequent database interactions, experienced higher-than-expected

memory usage. This can be explained by service-specific caching, repeated data queries due to

55

service isolation, and overhead from API calls. This result is consistent with studies such as

(Auer et al., 2021), which noted that microservices tend to consume 30-40% more memory

compared to monoliths due to duplication of dependencies and container overhead.

The refactorability analysis presented in Table 5.3 highlights another key challenge—the

transition from monolithic to microservices required significantly more time across all stages.

While service development in a monolith required only six weeks, the same stage in

microservices took ten weeks, largely due to service decomposition, API restructuring, and

ensuring inter-service communication. Additionally, database migration proved to be one of

the most time-intensive phases, requiring six weeks for microservices compared to four weeks

in monolithic architecture. This increase is attributed to the complexity of breaking down a

shared database into service-specific databases and handling consistency through distributed

transactions or event-driven synchronization. Database restructuring is one of the most difficult

parts of microservices adoption, particularly for legacy monolithic applications. The results

support this assertion, as ensuring referential integrity, normalizing schema changes, and

handling foreign key relationships added to refactoring complexity.

One of the unexpected findings was that microservices introduced additional network

overhead, leading to increased latency for API interactions. Although microservices were

expected to improve performance through independent scaling, some services experienced

higher-than-anticipated response times, particularly Order Processing and Cart Services. This

can be attributed to higher inter-service communication latency, additional network hops, and

serialization/deserialization overhead. According to (Kamisetty et al., 2023)microservices

architectures inherently introduce 20-50% additional network latency compared to monoliths

due to increased service-to-service calls. These findings suggest that optimizing service

communication through caching, batch processing, or asynchronous messaging could reduce

network overhead.

Despite the increased complexity and higher initial costs, the transition to microservices

ultimately provides greater scalability, resilience, and modular flexibility. The fault isolation

capabilities of microservices prevent a failure in one service from affecting the entire system,

enhancing reliability. Additionally, independent deployment pipelines allow faster release

cycles, enabling continuous integration and continuous deployment (CI/CD) strategies.

However, the findings also highlight that organizations must carefully assess their architecture

before migrating, as microservices introduce operational overhead that requires a well-

structured DevOps approach.

In conclusion, the discussion of results indicates that while microservices improve scalability

and modularity, they introduce challenges related to refactorability, infrastructure costs, and

network performance. The results align with existing research, reinforcing that microservices

are not a one-size-fits-all solution—they work best for large-scale, high-traffic applications

requiring independent scalability, whereas monoliths remain viable for smaller applications

with predictable workloads. Future work should explore optimization strategies for inter-

service communication, database partitioning techniques, and cost-efficient cloud

infrastructure management to further refine the efficiency of microservices adoption.

56

Chapter 6. Conclusion and Future Work

6. 1 Conclusion

The study performed a transition from a monolithic architecture to a microservices-

based system emphasizing refactorability, scalability, and performance and adopting a shared

database model. The results show that microservices significantly enhance the system

capability to scale up and tolerate faults, facilitating modularization and individual service

deployments. However, the adoption of the shared database model brings its own set of

challenges, resulting in scalability bottlenecks and database contention issues (Paccha &

Velepucha, 2025). Although scalability is affected, a shared database enables data consistency

among the services, which is a paramount requirement in real-world applications.

An important highlight of the study is that, in as much as scalability is inherent in microservices

architectures, database design is pertinent in keeping the system efficient. Findings indicated

that monolithic architectures are not able to withstand loads when they increase but offer better

horizontal scalability compared to microservices architectures. The latter introduces an

operational overhead compared to the former by requiring additional infrastructure like service

discovery, API Gateway, and Distributed logging system (Tian et al., 2024). Moreover,

Strangler Fig Pattern offered a way to gradually migrate a monolithic system with minimum

downtime by decoupling monolithic components incrementally into loosely coupled services.

The shared database model provided both benefits and limitations, with the benefit of ensuring

data consistency and minimizing migration complexity, but at the expense of limiting

microservice scalability potential since highly concurrent read/write operations generally are

not possible (Amrutha, Jayalakshmi and Geetha, 2024). Additionally, the research shows that

microservices must be carefully decomposed to avoid incurring too much overhead in API

communications, as this can hinder performance. Overall, the results suggest that organisations

looking to adopt microservices must carefully evaluate their database strategy and optimise

inter-service communication to achieve an optimal balance of performance, maintainability

and scalability.

While this study provides valuable insights into the implementation of microservices

architecture with a shared database architecture, it is not without limitations. The study was

conducted in a controlled environment, and factors such as network latency, cloud re-

platforming costs, and real-world traffic patterns were not adequately addressed. In addition,

the study also did not consider alternative database models in microservices architecture, such

as database-per-service, CQRS (Command Query Responsibility Segregation) and event-

driven architecture, etc., which can further improve microservices architecture efficiency.

Security concerns were also outside the scope of the study, such as service authentication/

authorization mechanisms and API security. Future work should examine these aspects in

greater detail, to provide a more comprehensive evaluation of microservices-based

architectures.

57

6. 2 Future Work

The paper interpreted the future work which is to compare and contrast different

strategies of database in microservices architectures. Further, the assessment of consistency,

performance and scalability in terms of the shared database model and database-per-service

based model is required by future research. Implementing event-drive architectures with

Apache Kafka or RabbitMQ might alleviate some of the database contention problems

observed in this research, as the communication between the services is asynchronous (Paccha

and Velepucha, 2025). CQRS can be utilised to decompose the system further optimizing the

system even in high load scenario by separating the read and write paths.

Another important direction is Automating Monolith-to-Microservices Migration. Despite the

advancements, monolith-to-microservices migrations still require significant manual effort,

ultimately adding development time and complexity. Future work could explore automatic

service decomposition tools powered by AI which could study monolithic systems and

automatically separate out loosely coupled microservices. In addition, an automated testing

framework for microservices migrations may be created to solutions performance regressions

and integration failures early in the migration process .

Next, it is also crucial to deploy the project live to evaluate the scalability in the wild. This

paper highlighted scalability of the project in a controlled local environment, but deploying it

online will expose the project to realistic user traffic and clients with distribution of work

which could all help us observe its real-time performance. In addition, real online deployment

test results would help us understand how specific cloud infrastructures perform (e.g., AWS

vs. GCE), the impact of network latency, and the cost-performance tradeoff during deployment.

Existing cloud-based solutions can be used such as Kubernetes, AWS, Google Cloud or Azure

so that the microservices can be dynamically scaled up and down to the maximum level and be

tested on how they perform in production kind of environments.

Alternatively, you could explore performance optimization techniques. Consider Cache:

Exploring caching mechanisms like Redis, Memcached can help reduce database load and

enhancements response time in microservices. On top of that there are also possibility to

research the horizontal scaling strategies with Kubernetes orchestration in order to utilize the

resources more efficiently in cloud native environments. It is also possible in serverless

computing strategies such as AWS Lambda, Azure Functions, GCP Cloud Functions for

microservices-based strategies (Amrutha, Jayalakshmi and Geetha, 2024).

In-depth focus on security is needed, as well. In the future work this should be expanded into

service to service authentication methods (OAuth, JWT, and API security best practices. It

might also be worth looking into the use of service mesh technologies like Istio, and Linkerd,

which help with the security, observability, and traffic management among microservices. Last

but not the least, one can also have failure recovery mechanisms like circuit breaker, retries

and distributed tracing to achieve.

Lastly, it would be quite useful to illustrate real case studies how these findings are put into

practice at an enterprise scale. We recommend that future work continue and broaden efforts

to enabling longitudinal microservices studies, enabling researchers to longitudinally assess

microservices architectures in the facets of maintainability, operational costs, and longer-term

business impacts of adopting microservices – thus informing organizations whether and how

58

they should migrate their monolithic systems to microservices architectures with cost-effective

and performance-efficient performance scalability in mind.

59

References

Alcides Mora Cruzatty, A. et al. (2024) ‘Assessment of Container Orchestration Strategies in

the Migration of Monolithic Applications to a Microservices Architecture Using Open-Source

Technologies’, in M.Z. Vizuete et al. (eds) Applied Engineering and Innovative Technologies.

Cham: Springer Nature Switzerland, pp. 83–96. Available at: https://doi.org/10.1007/978-3-

031-70760-5_7.

Al-Debagy, O. and Martinek, P. (2018) ‘A Comparative Review of Microservices and

Monolithic Architectures’, in ResearchGate. Available at:

https://doi.org/10.1109/CINTI.2018.8928192.

Ali, J.M. (2024) ‘Software engineering architecture and its promising opportunities’, Advances

in Engineering Innovation, 7, pp. 37–40. Available at: https://doi.org/10.54254/2977-

3903/7/2024034.

AlOmar, E.A., Mkaouer, M.W. and Ouni, A. (2024) ‘Behind the Intent of Extract Method

Refactoring: A Systematic Literature Review’, IEEE Transactions on Software Engineering,

50(4), pp. 668–694. Available at: https://doi.org/10.1109/TSE.2023.3345800.

Amrutha, L., Jayalakshmi, D.S. and Geetha, J. (2024) ‘Enhancing Deployment and

Performance Measurement of Serverless Cloud Microservices with Warm Start’, in 2024 15th

International Conference on Computing Communication and Networking Technologies

(ICCCNT). 2024 15th International Conference on Computing Communication and

Networking Technologies (ICCCNT), pp. 1–7. Available at:

https://doi.org/10.1109/ICCCNT61001.2024.10725992.

Apache JMeter - Apache JMeterTM (no date). Available at: https://jmeter.apache.org/

(Accessed: 23 February 2025).

Apache Kafka (no date) Apache Kafka. Available at: https://kafka.apache.org/documentation/

(Accessed: 23 February 2025).

Ataei, P. (2024) ‘Cybermycelium: a reference architecture for domain-driven distributed big

data systems’, Frontiers in Big Data, 7. Available at:

https://doi.org/10.3389/fdata.2024.1448481.

Auer, F. et al. (2021) ‘From monolithic systems to Microservices: An assessment framework’,

Information and Software Technology, 137, p. 106600. Available at:

https://doi.org/10.1016/j.infsof.2021.106600.

Barzotto, T.R.H. and Farias, K. (2022) Assessing the impacts of decomposing a monolithic

application for microservices: A case study, ResearchGate. Available at:

https://doi.org/10.48550/arXiv.2203.13878.

Bashtovyi, A. and Fechan, A. (2024) ‘Distributed Transactions in Microservice Architecture:

Informed Decision-making Strategies’, Vìsnik Nacìonalʹnogo unìversitetu ‘Lʹvìvsʹka

polìtehnìka’. Serìâ Ìnformacìjnì sistemi ta merežì, 15, pp. 449–459. Available at:

https://doi.org/10.23939/sisn2024.15.449.

Baumgartner, J.K. (2022) ‘From Monolith to Microservices’.

Berry, V. et al. (2024) ‘Is it Worth Migrating a Monolith to Microservices? An Experience

Report on Performance, Availability and Energy Usage’, in 2024 IEEE International

Conference on Web Services (ICWS). 2024 IEEE International Conference on Web Services

(ICWS), pp. 944–954. Available at: https://doi.org/10.1109/ICWS62655.2024.00112.

Bhatnagar, S. and Mahant, R. (2024) Fortifying Financial Systems: Exploring the Intersection

of Microservices and Banking Security, ResearchGate. Available at:

https://doi.org/10.13140/RG.2.2.13110.72001.

Bjørndal, N. et al. (2020) Migration from Monolith to Microservices : Benchmarking a Case

Study, ResearchGate. Available at: https://doi.org/10.13140/RG.2.2.27715.14883.

60

Chaieb, M., Sellami, K. and Saied, M.A. (2023) ‘Migration to Microservices: A Comparative

Study of Decomposition Strategies and Analysis Metrics’.

Chen, M. et al. (2024) ‘TraDE: Network and Traffic-aware Adaptive Scheduling for

Microservices Under Dynamics’. arXiv. Available at:

https://doi.org/10.48550/arXiv.2411.05323.

Curnicov, A. (2025) Research on microservices architecture for an Automated Surveillance

System. Thesis. Universitatea Tehnică a Moldovei. Available at:

https://repository.utm.md/handle/5014/29200 (Accessed: 19 February 2025).

Dragoni, N. et al. (2017) ‘Microservices: yesterday, today, and tomorrow’, in ResearchGate.

Available at:

https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_t

omorrow (Accessed: 5 February 2025).

El Akhdar, A., Baidada, C. and Kartit, A. (2024) ‘Adaptability of Microservices Architecture

in IoT Systems : A Comprehensive Review’, in Proceedings of the 7th International

Conference on Networking, Intelligent Systems and Security. New York, NY, USA:

Association for Computing Machinery (NISS ’24), pp. 1–9. Available at:

https://doi.org/10.1145/3659677.3659734.

Fowler, M. and Beck, K. (2019) Refactoring: improving the design of existing code. Second

edition. Boston Columbus New York San Francisco Amsterdam Cape Town Dubai London

Munich: Addison-Wesley (The Addison-Wesley signature series).

Gandhi, H. and Vashishtha, S. (2025) IMPLEMENTING SCALABLE MICROSERVICES FOR

BIG DATA PROCESSING IN CLOUD ENVIRONMENTS, ResearchGate. Available at:

https://doi.org/10.56726/IRJMETS66275.

Garimilla, M. (2024) Microservices Architecture: Revolutionizing Modern Software

Development, ResearchGate. Available at: https://doi.org/10.15680/IJIRSET.2024.1309090|.

Goniwada, S.R. (2022) Cloud Native Architecture and Design: A Handbook for Modern Day

Architecture and Design with Enterprise-Grade Examples. Berkeley, CA: Apress. Available

at: https://doi.org/10.1007/978-1-4842-7226-8.

González, S. and Ortiz, I. (2024) ‘Overcoming Challenges in Microservice Architectures’,

ResearchGate [Preprint]. Available at:

https://www.researchgate.net/publication/386219405_Overcoming_Challenges_in_Microserv

ice_Architectures (Accessed: 18 February 2025).

Harris, C. (no date) Microservices vs. monolithic architecture, Atlassian. Available at:

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-

monolith (Accessed: 12 February 2025).

Hassan, H., Abdel-Fattah, M.A. and Mohamed (2024) ‘Migrating from Monolithic to

Microservice Architectures: A Systematic Literature Review’, ResearchGate [Preprint].

Available at: https://doi.org/10.14569/IJACSA.2024.0151013.

Jani, Y. (2024) Unified Monitoring for Microservices: Implementing Prometheus and Grafana

for Scalable Solutions, ResearchGate. Available at: https://doi.org/10.51219/JAIMLD/yash-

jani/206.

Kamisetty, A. et al. (2023) ‘Microservices vs. Monoliths: Comparative Analysis for Scalable

Software Architecture Design’, ResearchGate [Preprint]. Available at:

https://doi.org/10.18034/ei.v11i2.734.

Karwatka, P. (2020) Monolithic architecture vs microservices, Cloudflight. Available at:

https://www.cloudflight.io/en/blog/monolithic-architecture-vs-microservices/ (Accessed: 23

February 2025).

Kassetty, N. and Chippagiri, S. (2025) Beyond the Monolith: Comprehensive Strategies for

Architecting, Scaling, and Sustaining Resilient Distributed Systems, ResearchGate. Available

at: https://doi.org/10.34218/IJRCAIT_08_01_016.

61

Khakame, P.W. (2016) Development of a scalable microservice architecture for web services

using os-level virtualization. Thesis. University of Nairobi. Available at:

http://erepository.uonbi.ac.ke/handle/11295/99091 (Accessed: 14 February 2025).

Kristiyanto, D.Y. et al. (2024) ‘Comprehensive Framework for Transitioning Monolithic to

Microservices in MVC Context’, in 2024 3rd International Conference on Creative

Communication and Innovative Technology (ICCIT). 2024 3rd International Conference on

Creative Communication and Innovative Technology (ICCIT), pp. 1–7. Available at:

https://doi.org/10.1109/ICCIT62134.2024.10701144.

Maj, J., Zielony, P. and Piotrowski, K. (2024) ‘Migrating WSN Applications from Monolithic

to a Modular Approach Based on the tinyDSM Middleware: Scenarios and Analysis’, in 2024

IEEE Conference on Pervasive and Intelligent Computing (PICom). 2024 IEEE Conference on

Pervasive and Intelligent Computing (PICom), pp. 119–124. Available at:

https://doi.org/10.1109/PICom64201.2024.00023.

Manchana, R. (2021) ‘Balancing Agility and Operational Overhead: Monolith Decomposition

Strategies for Microservices and Microapps with Event-Driven Architectures’, North American

Journal of Engineering Research, 2(2). Available at: https://najer.org/najer/article/view/20

(Accessed: 14 February 2025).

Mehta, G. et al. (2024) ‘Revisiting Monoliths: A Pragmatic Case for Transitioning from

Microservices Back to Monolithic Architectures’, ResearchGate [Preprint]. Available at:

https://doi.org/10.17148/IJARCCE.2024.131251.

Microservices Pattern: Pattern: API Gateway / Backends for Frontends (no date)

microservices.io. Available at: http://microservices.io/patterns/apigateway.html (Accessed: 8

February 2025).

Microservices Pattern: Pattern: Shared database (no date) microservices.io. Available at:

http://microservices.io/patterns/data/shared-database.html (Accessed: 8 February 2025).

Monolithic vs Microservices - Difference Between Software Development Architectures- AWS

(2024) Amazon Web Services, Inc. Available at: https://aws.amazon.com/compare/the-

difference-between-monolithic-and-microservices-architecture/ (Accessed: 12 February

2025).

Monoliths to Microservices using the Strangler Pattern (no date) Amplication Blog. Available

at: https://amplication.com/blog/monoliths-to-microservices-using-the-strangler-pattern

(Accessed: 8 February 2025).

Muley, Y. (2024) ‘Comparative Analysis of Monolithic and Microservices Architectures in

Financial Software Development’, Journal of Artificial Intelligence, Machine Learning and

Data Science, 2(4), pp. 1846–1848. Available at: https://doi.org/10.51219/JAIMLD/Yogesh-

muley/408.

Nassima, A.M., Hanae, S. and Karim, B. (2024) ‘Towards Decomposing Monolithic

Applications into Microservices: Dynamic Analysis’, in Y. Mejdoub and A. Elamri (eds)

Proceeding of the International Conference on Connected Objects and Artificial Intelligence

(COCIA2024). Cham: Springer Nature Switzerland, pp. 99–104. Available at:

https://doi.org/10.1007/978-3-031-70411-6_16.

Newman, S. (2019) ‘Monolith to Microservices: Evolutionary Patterns to Transform Your

Monolith’.

Nitin, V. et al. (2023) ‘CARGO: AI-Guided Dependency Analysis for Migrating Monolithic

Applications to Microservices Architecture’, in Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering. New York, NY, USA:

Association for Computing Machinery (ASE ’22), pp. 1–12. Available at:

https://doi.org/10.1145/3551349.3556960.

Owen, A. (2025) Microservices Architecture and API Management: A Comprehensive Study

of Integration, Scalability, and Best Practices, ResearchGate. Available at:

62

https://www.researchgate.net/publication/388952031_Microservices_Architecture_and_API_

Management_A_Comprehensive_Study_of_Integration_Scalability_and_Best_Practices

(Accessed: 18 February 2025).

Paccha, P.M. and Velepucha, V.V. (2025) ‘Data Domain Servitization for Microservices

Architecture’, Latin-American Journal of Computing, 12(1), pp. 59–67.

Perry, M. (2023) 5 Tips For Managing Your Internal Developer Platform. Available at:

https://www.qovery.com/blog/5-tips-for-managing-your-internal-developer-platform/

(Accessed: 26 February 2025).

Powell, P. and Smalley, I. (2024) Monolithic vs. Microservices Architecture | IBM. Available

at: https://www.ibm.com/think/topics/monolithic-vs-microservices (Accessed: 27 February

2025).

Ramachandran, N. and Thirumaran, M. (2024) ‘A Novel Approach for Dynamic Microservices

Composition: Harnessing the Power of the PMCE Framework’, in 2024 International

Conference on Signal Processing, Computation, Electronics, Power and Telecommunication

(IConSCEPT). 2024 International Conference on Signal Processing, Computation,

Electronics, Power and Telecommunication (IConSCEPT), pp. 1–6. Available at:

https://doi.org/10.1109/IConSCEPT61884.2024.10627913.

Salaheddin Elgheriani, N. and Ali Salem Ahme, N.D. (2022) ‘MICROSERVICES VS.

MONOLITHIC ARCHITECTURES [THE DIFFERENTIAL STRUCTURE BETWEEN

TWO ARCHITECTURES]’, MINAR International Journal of Applied Sciences and

Technology, 4(3), pp. 500–514. Available at: https://doi.org/10.47832/2717-8234.12.47.

Salunkhe, V. et al. (2024) ‘Leveraging Microservices Architecture in Healthcare: Enhancing

Agility and Performance in Clinical Applications’. Rochester, NY: Social Science Research

Network. Available at: https://doi.org/10.2139/ssrn.4985002.

Samant, P.S. (2024) MICROSERVICES IN THE CLOUD: ENABLING SCALABILITY,

FLEXIBILITY, AND RAPID DEPLOYMENT, ResearchGate. Available at:

https://www.researchgate.net/publication/381306736_MICROSERVICES_IN_THE_CLOU

D_ENABLING_SCALABILITY_FLEXIBILITY_AND_RAPID_DEPLOYMENT

(Accessed: 14 February 2025).

Santos, L. et al. (2024) ‘Microfront-End: Systematic Mapping’:, in Proceedings of the 20th

International Conference on Web Information Systems and Technologies. 20th International

Conference on Web Information Systems and Technologies, Porto, Portugal: SCITEPRESS -

Science and Technology Publications, pp. 119–130. Available at:

https://doi.org/10.5220/0013015400003825.

Santos, T.C. (2018) Adopting Microservices.

Seedat, M. et al. (2023) Systematic Mapping of Monolithic Applications to Microservices

Architecture, ResearchGate. Available at:

https://doi.org/10.22541/au.168110476.68608378/v1.

Sethi, S. and Panda, S. (2024) ‘Transforming Digital Experiences: The Evolution of Digital

Experience Platforms (DXPs) from Monoliths to Microservices: A Practical Guide’, Journal

of Computer and Communications, 12(2), pp. 142–155. Available at:

https://doi.org/10.4236/jcc.2024.122009.

Shao, P. et al. (2024) ‘Design and Implementation of an Electricity Market Trading Platform

Architecture for High Concurrency Access by Market Entities’, in 2024 IEEE 6th Advanced

Information Management, Communicates, Electronic and Automation Control Conference

(IMCEC). 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and

Automation Control Conference (IMCEC), pp. 746–751. Available at:

https://doi.org/10.1109/IMCEC59810.2024.10575639.

63

Soma (2024) Horizontal scaling vs Vertical Scaling in System Design, DEV Community.

Available at: https://dev.to/somadevtoo/horizontal-scaling-vs-vertical-scaling-in-system-

design-3n09 (Accessed: 13 February 2025).

Strangler fig pattern - AWS Prescriptive Guidance (no date). Available at:

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/strangler-

fig.html (Accessed: 8 February 2025).

Sulkava, A. (2023) ‘Building scalable and fault-tolerant software systems with Kafka’.

Sun, Y. (no date) ‘A Comparative Study of Application Performance and Resource

Consumption between Monolithic and Microservice Architectures’.

Tapia, F. et al. (2020) ‘From Monolithic Systems to Microservices: A Comparative Study of

Performance’, Applied Sciences, 10(17), p. 5797. Available at:

https://doi.org/10.3390/app10175797.

Thatikonda, V.K. and Mudunuri, H.R.V. (2024) ‘Microservices vs. Monoliths: Choosing the

Right Architecture for Your Project’, International Journal of Software Computing and Testing

[Preprint].

Tian, T. et al. (2024) ‘Design and Application of Database Architecture with Super Large-

Scale for Marketing Service System of Energy Internet in Enterprise Digital Transformation’,

in 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS).

2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS), pp.

275–285. Available at: https://doi.org/10.1109/ICEEPS62542.2024.10693085.

Wang, Y. (2024) ‘Optimizing Payment Systems with Microservices and Event-Driven

Architecture: The Case of Mollie Platform’.

ZakerZavardehi, H. (2024) A Semi-Automated Approach for Incremental Migration from

Monolithic to Microservices Architecture. Thesis. Available at:

https://macsphere.mcmaster.ca/handle/11375/30255 (Accessed: 18 February 2025).

	Chapter 1. Introduction
	1. 1 Background
	1. 2 Problem Statement
	1. 3 Research Questions
	1. 4 Research Objectives
	1. 5 Contributions
	1. 6 Thesis Organization

	Chapter 2. Theoretical Background
	2. 1 Understanding Architectural Transitions: From Monoliths to Microservice
	2. 2 Monolithic Architecture: A Unified but Rigid Approach
	2. 3 Microservice Architecture: A Modular and Scalable Paradigm
	2. 4 Scaling in Software Engineering: Vertical vs. Horizontal Scaling
	2. 5 Performance and Resource Utilization
	2. 6 Refactorability in Software Systems: Transitioning to Microservices
	2. 7 Theoretical Summary: Foundations for Implementation

	Chapter 3. Literature Review
	3. 1 Overview of Monolithic and Microservices Architectures
	3. 2 Refactorability: Definition and Importance
	3. 3 Challenges in Transitioning from Monolith to Microservices
	3. 4 Existing Transition Strategies and Best Practices
	3. 5 Discussion on Literature Review

	Chapter 4. Methodology
	4. 1 Overview
	4. 2 Proposed Framework/Model/Technique
	4.2.1 Architectural Design of Monolith vs. Microservices (Strangler Fig Pattern)
	4.2.2 Service Decomposition Strategy
	4.2.3 Data Management (Shared Database Model)
	4.2.4 Deployment and Scaling

	4. 3 Methodology
	4.3.1 System Design and Implementation
	4.3.2 Evaluation Setup
	4.3.3 Case Study/Experimental Setup

	4. 4 Evaluation Criteria
	4. 5 Benchmark Algorithms

	Chapter 5. Results and Discussion
	5. 1 Quantative Insights from System
	5. 2 Performance Under Load: Docker Stats Analysis
	5.2.1 Monolithic System Performance
	5.2.2 Microservices System Performance
	5.2.3 CPU Usage Analysis
	5.2.4 Memory Usage Analysis

	5. 3 Performance Under Load: Response Time and Throughput Analysis
	5.3.1 Monolithic System Performance
	5.3.2 Microservices System Performance
	5.3.3 Comparative Analysis of Response Time and Throughput

	5. 4 Refactorability Time & Challenges
	5. 5 Hardware & Infrastructure Cost
	5. 6 Discussion

	Chapter 6. Conclusion and Future Work
	6. 1 Conclusion
	6. 2 Future Work

