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Abstract

Modern software systems' requires scalability, flexibility, and maintainability have been
gradually increasing. A monolithic architecture pattern becomes ineffective for scaling up an
application since such systems tend to have high coupling, complex deployment processes, and
scalability challenges, preventing them from efficiently managing growing workloads. To
address these challenges, a microservice architecture pattern was introduced. Microservices
Architecture is a service-oriented architecture pattern that allows for independent scaling, fault
isolation, and ease of deployment as the application is built as a collection of multiple,
independent, small services. Transitioning from Monolithic-based architecture to
Microservices-based architecture comes with its own set of challenges including but not limited
to service communication, distributed data management, and migration complexity. One of the
major architectural design decisions to be considered during this transition is the choice of the
database model. That is whether to run a shared database across multiple services sharing tables
associated with multiple services or to adopt a database-per-service model. Database-per-
service model allows services to be autonomous but increases operation complexity & data
consistency challenges whereas sharing a database simplifies most of the challenges that come
with data sharing among multiple services but limits microservices’ ability to scale up.

This thesis aims to explore the viability, scalability, and performance trade-offs of
microservices based on a shared database approach. We devised a series of structured migration
strategies based on the Strangler Fig Pattern to incrementally refactor monolithic components
into microservices. We performed a series of performance evaluations to examine the
scalability of the monolithic and microservices architectures. Evaluations specifically targeted
three key aspects in the migration: performance of response times under concurrent workloads,
CPU utilization, and database performance. Results indicate that microservices scale better
than a monolithic architecture, but database contention in a shared database approach can also
result in performance bottlenecks that ultimately throttle scalability. We additionally examine
strategies to optimize database access, service orchestration, and API communication
overhead.

The main contribution of this paper is the empirical investigation of the scalability of
microservices using the same database. The resulting output will aid organizations in the
process of moving away from a monolithic application to a distributed system over
microservices. It also provides a way to deploy microservices online and conduct scalability
testing in the real world using cloud computing. The analysis shows that although
microservices provide the ability to scale specific modules of a system, an organization is at
risk of not seeing those benefits due to its database strategy. More efficient database strategies
can be used to obtain a much better and faster-performing system. Future work would include
an investigation into databases that are not shared among the services, Event-Driven
Architectures where services communicate asynchronously, and microservice migration
through automated tasks.
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Chapter 1. Introduction

1.1 Background

As software businesses seek higher scalability, more agility, and longer maintainability
in their modern software systems, they are compelled to adopt architectural paradigms that
satisfy these conflicting requirements: Historically all components, the user interface, the
business logic, and the data access layer were tightly coupled into a single codebase and
deployment unit in monolithic architectures usually also all three per server instance. On top
of that, such a system markets itself as providing central control over its architecture while
simplifying initial development and debugging. Problems are always just around the corner
though: with monolithic systems, this means that when you want to increase an entire
subsystem's performance by an order of magnitude, every bit has to be rewritten.

Moving from monolithic architectures to microservices architectures results in applications
where modules are more loosely coupled and can be separately deployed, each providing a
specific business capability. The modularity of microservices not only enhances scalability but
also improves fault isolation and allows businesses to choose different technologies for
different services (Newman, 2019). However, transitioning to a microservices environment
introduces complexities, such as distributed system coordination, network latency, and
increased operational overhead compared to monolithic systems (Dragoni et al., 2017). In
particular, inter-process communication mechanisms like REST APIs and message brokers
(e.g., Kafka, RabbitMQ) are more susceptible to bottlenecks due to network latency and data
serialization overhead (Apache Kafka, no date).

Among the debates over resource utilization and long-term maintenance, a recurring topic is
whether a particular venture's architecture should be monolithic or microservice-based:
Monolithic systems take advantage of cheap hardware and share resources across components.
However, they face a single point of failure and cannot tear out part of themselves without
bleeding everywhere. This kind of software also tends to be updated at once rather than in
incremental mode. Microservices allow precise scaling (e.g., auto-scaling high-demand
services), but require duplicate infrastructure (e.g. separate databases, containers) and
orchestration tools like Kubernetes (Al-Debagy and Martinek, 2018).

Moving from monolithic architectures to microservices has significant complications including
loosening tightly bundled components, restructuring data flows, and dealing with cross-cutting
concerns such as system orchestration (Kristiyanto et al., 2024). Creating completely separate
containers for each small partition, with communication in between as a means of releasing
tension, set the buildings plainly out of reach. The proposed infrastructure and integration
mechanisms required to support major changes detract from the simplicity of would-be rapid
migrations. Source Code trials show that the development of its own indigenous middleware
component was particularly useful to shed light on interfaces and operational routines in service
communication, yet this was also just one example. Reporting on a new IT practice at Chesnas
since the beginning of last month (known as 'tiny bridge' architecture) set up finite parameters
to tackle these issues within reasonable limits to simulate this process, a "microbridge”
middleware was developed to manage inter-service communication, reflecting real-world
transition hurdles (Salaheddin Elgheriani and Ali Salem Ahme, 2022)



1.2 Problem Statement

The monolithic vs. microservices debate has gained traction among practitioners as the
complexity of scalable applications grows (Dragoni et al., 2017). Although monolithic
architectures are simple and easy to manage, microservices architectures provide significant
benefits such as increased modularity and fault isolation (Newman, 2019). Nevertheless,
empirical studies measuring their refactorability when faced with scalability constraints remain
sparse (Santos, 2018). Recent work has shown that the transition between monolithic and
microservices architectures often reveals problems related to data consistency, and service
decomposition (Dragoni et al., 2017), as well as higher operational complexity (Tapia et al.,
2020). While these issues are particular to MTSs and MTS architectures, they are still not
addressed in the current literature, which we attribute to a lack of empirical work on these
topics.

Since my simulated projects had structural transitions, I noticed critical problems such as
inefficiency in resource usage and performance bottlenecks. Apache JMeter (Apache JMeter
- Apache JMeter™ , no date) was used to compare the performance of these projects and these
metrics will be discussed in more detail in the Results and Discussion section. The
microservices architecture, as an example, had issues with latency due to inter-service
communication, and the monolithic system was limited in its ability to handle concurrent user
loads. This result emphasizes the importance of systematic comparisons of each architecture
under scalability constraints, at least in terms of operational cost and reusability.

Organizations are exposed to expensive, trial-and-error migration tactics as a result of this
mismatch, which frequently leads to operational bottlenecks and delayed deployments. Our
creation of the "microbridge” middleware, for instance, brought to light the difficulties in
overseeing inter-service communication and redesigning data flow—two crucial but little-
studied facets of architectural transitions (Mehta et al., 2024).

This research project aims to bridge this gap by developing a refactorability analysis
framework, leveraging scalability simulations and middleware prototypes to deliver data-
driven insights for architectural decision-making.

1.3 Research Questions

A research question is a question that a research project sets out to answer. Choosing
the right architecture is important when considering the performance, scalability, and
operation. Over the past decade many organizations have started to transform from monolithic
architecture to microservices or have directly migrated to microservices. Hence, there is a need
to understand the implications of migrating to microservice architecture. This paper intends to
answer the above problem with the help of some leading research questions:

e What performance metrics are indicators of performance change?

e How much does scalable this project for both Monolithic and Microservices
architecture?

e How much refactoring effort matters in determining the serviceability of
microservices?

e How disruptive is it to migrate from monolithic to microservices?

e What would this migration or refactoring cost in terms of Development vs
Operation Cost?



This study seeks to answer the following research questions:

1.

Performance Metrics: What differences are observed between the monolithic and
microservices versions of projects | developed to understand the difference between
microservice and monolith in terms of key performance metrics, such as response time,
CPU utilization, and memory consumption, when subjected to realistic workload
patterns? Quantifying these performance variations is imperative to determine whether
the microservices-inspired refactoring has any apparent performance improvements or
whether the architectural overhead of distributed systems incurs additional inefficiency.

Scalability Considerations: What are the comparative strengths and weaknesses of the
monolithic and microservices architectures as applied to projects when considering
workload scale and increased traffic demands? While microservices architectures have
conventionally been linked to improved scalability, this research questions whether any
purported benefits truly outweigh the potential inefficiencies of increased complexity.

Refactoring Effort & Quantification: What is the migration effort required to refactor
the existing monolithic project application to adapt a microservices-inspired
architecture, and what reasonable metrics could be applied to estimate the quantitative
effort involved? Software refactoring is often a resource-intensive endeavor that
requires significant development time, architectural refactoring, and dependency
reallocation. This research will provide different methodologies to quantify the overall
refactoring feasibility between monolithic and microservices approaches, specifically
considering code complexity metrics and deployment iterations.

Migration Challenges: What are the key challenges in the process of migration from
the monolithic to the microservices version, and what architectural and practical
concerns must be addressed to facilitate such a migration? The scope of prioritization
for these challenges has grown significantly to span not only technical service
orchestration and data consistency concerns, but also team organization structure,
deployment methodology, and operational procedure.

Infrastructure & Cost Differences: What are the infrastructure, hardware, and
associated resource requirements for the monolithic and microservices, and what is the
comparative cost of deployment and operation between microservices and monolithic
counterparts? Despite claims that microservices encourage modular scaling rather than
monolithic over-provisioning, the elevated changes incurred from excessive network
overhead and containerized cloud orchestration could begin to increase observed
operating costs instead. By quantifying the comparative costing information between
the two approaches, this research addresses whether the advantages of microservices
structures are worth the potential monetary and infrastructure cost.

Each of these research questions aims to illuminate a different aspect of the trade-offs involved
in architectural decisions. The methodology section will detail the specific approaches used to
answer these questions.

1.4

Research Objectives

The purpose of this study is to explore the refactorability of the monolithic architecture

into microservices, with a strong emphasis on the scalability, performance, and operational



problems related to refactoring. Microservices are a popular choice for software engineering
solutions as they provide improved agility, scalability, and maintainability (Hassan, Abdel-
Fattah and Mohamed, 2024). However, refactoring an existing system into a microservices
architecture is a difficult, multi-challenged process with a variety of challenges, such as service
decomposition, synchronous vs. asynchronous communication, and data consistency
(Bashtovyi and Fechan, 2024). Therefore, a well-formed framework that can be used for a
systematic evaluation of the technical, architectural, and operational factors that govern
refactorability will be studied, providing an empirical insight of the context for selecting and
assessing modernization alternatives in software architectural decision-making in the context
of modern software engineering (Alcides Mora Cruzatty et al., 2024)

To accomplish this, the study begins by examining the performance metrics of monolithic and
microservices architectures through controlled performance tests. Utilizing Apache JMeter and
Docker, this work replicates real-world requests to assess key performance indicators such as
API response time, CPU utilization, and memory consumption. Particular attention is given to
how API gateways introduce latency and impact system responsiveness in microservices
(Hassan, Abdel-Fattah and Mohamed, 2024). Moreover, this study explores how each
architectural style performs under high-load conditions, comparing their resource utilization
efficiency and capacity to manage overload scenarios.

Another objective of the study is to examine the differences in scalability and resource
allocation between monolithic and microservices architectures. By simulating different traffic
loads of client requests, we aim to evaluate how each system responds to growing user
demands. In particular, we investigate the bottlenecks of monolithic systems that inhibit
scalability, and how microservices can mitigate these bottlenecks by distributing workloads
across multiple independent services (Berry et al., 2024).

Beyond the performance and scalability, this paper also explores the organizational and
technical challenges to move from a monolithic system to microservices. Through a
comprehensive review of academic and peer-reviewed literature, this study identifies key
challenges in service composition, data consistency issues, and DevOps challenges with
microservices including CI/CD pipelines and infrastructure as Code (laC) (Lahami et al.,
2024). 1t also analyses the complexity of monitoring tools such as Prometheus and the ELK
Stack since these tools are implemented to maintain and keep microservices-based systems
under control (ZakerZavardehi, 2024).

Finally, this paper analyses the infrastructure and operational costs of monoliths and
microservices to evidence the economic impact of moving to a distributed architecture. The
paper takes a practical approach by building and testing a minimal cost-analysis tool to
demonstrate how to quantify the long-term trade-offs between monoliths and microservices
(Alcides Mora Cruzatty et al., 2024).

By addressing the gap between architectural theory and practice, the findings of this research
will provide a holistic framework for assessing the eligibility and challenges of monolithic
systems for refactoring to microservices. These findings will be useful to businesses and
software architects in making sound decisions to refactor large, tightly coupled systems into
modular and scalable microservices while minimizing risk and ensuring optimum operational
value (Berry et al., 2024).



1.5 Contributions

The findings of this study contribute theoretically, practically, and methodologically to
the field of software architecture by identifying monolithic architecture refactorability in to
microservices. The present study tries to bridge the gap between theory and practice. It provides
a structured fashion to assess modularity, scalability, and maintainability for migration of any
midsize inventory system to microservice architecture. This study also helps software
architects, software engineers, and organizations would benefit from this research in one of
methods and steps they can utilize in order to understand whether and how to migrate from a
monolithic system to a microservices-based system or not by providing quantitative decision
making framework to see software adaptability by exploring its scalability, maintainability,
and modularity metrics.

The findings of this study advance software decomposition theory by proposing an innovative
estimation method for refactorability in relation to system modularity (Thatikonda and
Mudunuri, 2024). Furthermore, this study takes a different perspective compared to the
previous research, which tends to recommend the positive aspects of microservices. The
findings of this work provide a more nuanced approach by assessing the trade-offs related to
scalability, maintainability, and latency throughout the transition process (Nassima, Hanae and
Karim, 2024). Thus, this study provides insights into the complexity of refactorability in
architectural transformations and contributes to knowledge of reengineering challenges in
software restructuring and migration. By extensively examining the structural constraints of
monolithic systems, this study provides an in-depth understanding of microservices migration
to the scientific field and its implications for the evolution of software and design strategies.

From a practical standpoint, this research provides practical hints on how to improve the
maintainability of software systems. The guidelines provided in this research are aligned with
industrial best practices for developing scalable applications. A refactorability assessment
model is provided which allows software architects to analyze the refactorability of monolithic
applications to microservices architecture according to quantified software engineering
metrics. Guidelines for developing scalable applications are given in this study, which could
allow organizations to better understand the potential challenges involved in microservices
development (Kristiyanto et al., 2024). Empirical research presented in this study provides
operational evidence for the trade-offs between monolithic and microservices architecture,
which could allow various industry stakeholders to make informed choices about what should
and should not be modernized and deployed in the cloud (Hassan, Abdel-Fattah and Mohamed,
2024).

Methodologically, this study proposes a refactorability scoring model, which can be used by
organizations to determine the migration effort based on quantitative variables such as time-
to-architectural-refactor, levels of complexity, and dependency resolution. This refactorability
scoring model can be used as an unbiased assessment that can be replicated, adapted, and
verified in future studies that focus on software evolution and decomposition techniques.
Furthermore, the study performs a benchmarking performance analysis of monolithic vs
microservices architectures by comparing latency, response time, and scalability following the
controlled performance test using Apache JMeter and Docker (Kristiyanto et al., 2024).
Through empirical benchmarking, this study strengthens architectural decision-making in
software engineering by providing data-backed rationales to ensure organizations migrate their
monolithic architectures to microservices.



Taken as a whole, this study serves as a dual lens of theoretical understanding and practical
implementation by providing a structured framework to decide the intricacy and feasibility of
microservices migration. It provides software architects, engineers, and organizations with a
set of tools to make informed decisions on architectural restructuring, ensuring that legacy
systems are systematically evaluated before transitioning them to microservices. By combining
academic theory with practical real-world applications, this study builds on current software
engineering methodologies and aids the industry in building scalable, maintainable, and
performant systems.

1.6  Thesis Organization

This thesis is organized in six chapters. Each chapter presents context and background
relevant for this research. . The dissertation is presented as follows:

The first chapter introduces the research problem and its rationale. It describes the background
of this study, the problem statement, research questions, and objectives of the study. This
chapter also outlines the main contributions of this research and the ways it pushes the state-
of-the-art in the state-of-the-art in software architecture beyond its current status.

The second chapter "Theoretical Background” presents a comprehensive overview of
monolithic and microservices architectures by defining specific fundamental principles, along
with the advantages and disadvantages of the reviewed architectures. At the end of the chapter,
several important concepts such as scalability, performance optimization and system
modularisation, are reviewed ensuring that the reader has a thorough understanding of the
theoretical underpinnings of the research problem before proceeding to the practical
implementation aspects of the case study.

Chapter 3 is the literature review. It presents previous works and studies of monolithic and
microservices architectures in terms of performance quantification, scalability problems, and
empirical evidence of migration. Based on the gaps in the literature, it justifies the need for an
empirical refactorability study.

Chapter 4 explains methodology used in the study. Research approach, design, and data
collection methods are presented. This chapter describes the architectural realization of
monolithic and microservices models for creating the ground for comparison. Further,
benchmarking tools, performance metrics, and evaluation criteria are shown. In addition,
chapter describes the challenges of refactoring and strategies used to overcome them.

Chapter 5 is dedicated to results and discussion. It overlays the empirical results in terms of
execution throughput, resource consumption and scalability. Section also contains a state-
comparative evaluation of the costs of migration from monolithic to microservices architecture.
The discussion and interpretation of results attempted to relate findings obtained in this study
to those of previous research. The findings of the study have been discussed in terms of their
practical implications.

Finally, the sixth chapter summarizes the thesis and presents the conclusions of the research. It
recaps the main findings and discusses their theoretical and practical implications. It also
acknowledges the limitations of the study and suggests some directions for future work. For
example, as related to technological challenges, the thesis suggests studying automated



refactoring techniques. Measuring the maintainability of the microservices and SOA
architectures is another area for future work. Alternative architectural styles could be
considered. The thesis ends with references that list all the sources that were cited in the text,
and appendices that contain some additional materials, such as code snippets, experimental
data, and other relevant information.



Chapter 2. Theoretical Background

This section introduces the basic concepts of monolithic and microservices
architectures, as well as their differences, strengths, and weaknesses at the structural level. In
this article, we are going to discuss this trend of microservices and migrating from monolithic
to microservices-based systems which many companies are currently following due to the
growing necessity of scalability, maintainability, and high-performance applications in
software development nowadays.

This chapter will also introduce some of the important architectural decisions like deployment
approaches, infrastructure cost, service orchestration and fault-tolerance approaches. We will
have a look into the difficulties during the refactoring of a monolithic setup into microservices
with theory and examples. | seek to establish this theoretical basis so that the reader will have
the appropriate foundation to appreciate the empirical analysis and implementation discussed
in the chapters that follow.

2.1 Understanding Architectural Transitions: From Monoliths to Microservice

The migration to microservices from monolithic architecture has become a heavily
discussed topic amongst software engineering community due to an increased need
for scalable, maintainable and high performance applications (Hassan, Abdel-Fattah, and
Mohamed, 2024). In this chapter, | present a theoretical background for the work presented in
the thesis including a detailed discourse on monolithic and microservices architectures, their
pros and cons, scalability, performance metrics, and the challenges they undergo during
refactorability.

This aims to set out a knowledge base for the empirical study carried out in the subsequent
chapters. This is important context to assess the technical and operational challenges to
architectural transitions. It elaborates on the different factors affecting architectural choices
like deployment, infrastructure costs, service orchestration, and fault tolerance methods.

MONOLITHIC

MICROSERVICE
ARCHITECTURE ARCHITECTURE
User Micro- User Micro-
interface service interface service
Business Data / / \ \
Logic Access
Layer
Micro- Micro- Micro- Micro-
service service service service
] ] [ ]
L ] 4 @ L J
L] ® o o

Data Base

Data Base Data Base Data Base Data Base

Figure 2.1: Comparison of Monolithic and Microservices Architectures (Karwatka, 2020)



In microservices architecture, typically each service owns a particular database with the pattern
Database-per-Service can be seen in Figure 2.1 which improves data isolation, scales
independently, and reduces the possibility of cascading failures (Maj, Zielony and Piotrowski,
2024). In this study microservices share a single database. During the transition from
monolithic to microservices, these microservices sharing a single database pattern is often used
to implement microservices without losing data consistency (Paccha and Velepucha, 2025).

One database schema design ensures robust transactional consistency and ease of data
synchronization using the relational database one source of truth model. Nevertheless, it comes
with the trade-offs of sacrifices being made on independent scalability of services, single point
of failures, and performance bottleneck (Tian et al., 2024). On balance, the shared database
schema model used in this project has been optimized to maintain consistency across services
whilst fulfilling part of the overall system requirements (Amrutha, Jayalakshmi, and Geetha,
2024).

2.2  Monolithic Architecture: A Unified but Rigid Approach

Monolithic architecture is the conventional model of software design: all the
components of the application are bundled together in a single package. Historically, it used to
dominate the enterprise computing landscape, with enterprise applications and data-center
backed applications being built as monoliths (Mehta et al., 2024). In a monolithic application,
all the code for various components of the app is in a single codebase and not distributed across
separate codebases. The unified code is tightly coupled, meaning there is little flexibility to
slice down the code into separate components or to separate different components and services
from each other (Owen, 2025). There is normally a central database, and all the modules in the
monolithic software communicate directly with one another through the shared memory and
program space (Gonzalez and Ortiz, 2024). A cohesive and symmetrical interface is a pro
monolithic architecture offer. Nevertheless, scalability and maintainability end up becoming
an issue the bigger a project becomes.

Despite the mainstream move towards microservices, monolithic architectures continue to
offer certain advantages in particular scenarios. Simpler development: Having a single code
base can make it easier for developers to get up to speed on the codebase, and maintain a single
software product and environment. Easier debugging and testing: Thanks to operating in a
single, shared runtime environment, it can be easier to troubleshoot and debug programs, and
to trace calls and errors through the system (Maj, Zielony and Piotrowski, 2024). Simpler
deployment: Again, the monolith is packaged as a single deployment unit, so the entire
application is compiled and deployed in one go (Muley, 2024). More predictable performance:
Operating within a single execution context, rather than communicating between discrete
services, enables developers to avoid the risk of inter-service network latency (Mehta et al.,
2024). For those reasons, monolithic systems may still be ideally suited to small-to-medium
sized applications or situations where the project in question demands an accelerated
development process or few development cycles.

However, as applications become larger and more complex, monolithic architectures start to
experience serious drawbacks. One of the most important issues is scalability — monolithic
applications need to be scaled as a complete unit rather than component-wise, leading to a
waste of available resources and to an increase in operating costs (Salaheddin Elgheriani and
Ali Salem Ahme, 2022). Another major problem of the monolithic style is the chosen
technology stack. Through the use of a single stack, developers are prevented from adopting



different technologies, leading to a stagnating technology stack and making the modernization
of legacy applications cumbersome (Santos et al., 2024). Finally, deployment flexibility is
another major problem — even the tiniest updates are required to follow the deployment
schedule of the rest of the system (Ataei, 2024). This also involves an increase in downtime
and risk of deployment (Ataei, 2024), forcing organizations to establish complex strategies for
rollbacks in case of a defective deployment (Maj, Zielony and Piotrowski, 2024).

In terms of code maintainability, monolithic systems tend to accrue technical debt as systems
grow, because it becomes hard to manage a large code base with many interdependencies.
Some difficulties include slow feature development cycles owing to the coordination effort
required and higher risk of introducing bugs (Sethi and Panda, 2024). Furthermore, fault
isolation is another challenge in monolithic systems. Failures in a single module can affect the
entire system. This reduces the reliability of the system and increases the time taken to recover
from such a failure (Bashtovyi and Fechan, 2024). Therefore, due to such limitations,
organizations often look to migrate to microservices to achieve Dbetter scalability,
maintainability and operational efficiency.

While monolithic architectures provide simplicity, predictability, and ease of development,
they lack scalability, maintainability, and flexibility in bigger and more dynamic systems
(Harris, no date). The benefits of better resource utilization, independent scalability, and
improved system resilience are the main reasons most organizations shift from monolithic
architectures to microservices. The challenges encountered during the migration process
despite the benefits make it important for an organisation to make a clear evaluation of their
architectural needs before taking any action. The monolithic vs microservices debate
emphasizes the importance of knowing what architecture an application needs.

2.3  Microservice Architecture: A Modular and Scalable Paradigm

A diagrammatic comparison between microservices and monolithic architecture is one
of the most important visual aid items (Kamisetty et al., 2023). Microservices vs. monolithic
architectures figure would show how monolithic systems consist of a single, tightly coupled
unit with numerous components along with a shared database, while microservices architecture
is made up of individual and autonomous services, each with its own database, using APIs to
communicate (Sun, no date). Such visualization of the distinction would emphasize why
microservices bring more flexibility and better fault isolation than monolithic applications
which are facing bottlenecks when it comes to scale (El Akhdar, Baidada and Kartit, 2024).

The second key figure would be a workflow diagram, illustrating an architecture of the
microservices, supporting microservices interactions in the distributed architecture. This would
include an API Gateway routing the client requests to the appropriate microservices like
authentication, payments, order management, and so on (Bhatnagar and Mahant, 2024). Each
microservice will have their own decentralized database. The flow of communication between
the microservices will be explained, which generally tend to be REST APIs, gRPC, and event-
driven messaging queues (Ramachandran and Thirumaran, 2024). This would help exemplify
how microservices are communicating asynchronously but at the same time achieving data
consistency and scalability.

A table detailing potential advantages and disadvantages of microservices would provide a

clear comparison at a quick glance. The advantages of microservices are their independent
scaling, failure isolation, and choice of technology and the disadvantages are the increased
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communication overhead, data consistency challenges, and security risks. (Ali, 2024) Such a
table would present a clearly written comparison between the two methods. Microservices offer
greater modularity and efficiency but also dense complexity in their deployment and
monitoring (Salunkhe et al., 2024). A table provides clear and easy access to visually seeing
the comparison.

Another recommended figure is a scalability and fault isolation diagram, showing how
microservices independently scale and isolate failures of a single service from crashing the
whole application (Shao et al., 2024). Specifically, the diagram should have a load balancer
distributing incoming traffic to multiple instances of a microservice and explicitly label that
horizontal scalability, scaling by adding more instances to a microservice, is favoured over
vertical scalability, scaling by increasing the resources available to each instance (Shao et al.,
2024). Likewise, the figure should also illustrate how one failing service can independently
restart without failing other microservices, providing fault tolerance, indeed, this is a major
benefit of microservices over monolithic system, where a single failed service can cause an
application-wide outage (Curnicov, 2025).

Finally, a case study diagram on microservices adoption in the industry would provide a real-
world perspective on their impact. This visual could include logos or representations of major
companies such as Netflix, Amazon, Uber and Spotify, highlighting how each utilizes
microservices to achieve scalability, resilience, and rapid deployment (El Akhdar, Baidada and
Kartit, 2024). For instance, Netflix leverages microservices to support millions of concurrent
video streams, while Amazon applies microservices for dynamic inventory management and
personalized recommendations (Bhatnagar and Mahant, 2024). By visualizing these industry
implementations, the diagram would underscore how microservices enable innovation in large-
scale applications.

2.4  Scaling in Software Engineering: Vertical vs. Horizontal Scaling

Scalability in a system is its capability to handle a growing amount of workload from
an end-to-end system point of view. Vertical (or upward) scalability is adding more resources
(CPU, RAM) to the existing server to increase performance (Gandhi and Vashishtha, 2025).
This is the most popular approach used in monolithic architectures. Horizontal (or outward)
scalability is deploying multiple copies of a service and delegating traffic to each with the help
of a load balancer (Dragoni et al., 2017), which is one of the main features of microservices.
Unlike monoliths, which must scale vertically and only up to the hardware limit of the physical
host on which they run, microservices support horizontal scaling by default, enabling the
system to serve large-scale concurrent requests efficiently (Fowler and Beck, 2019). A scalable
system uses a variety of techniques such as load balancing, caching, and database partitioning
to enhance its overall performance and to handle the workload efficiently (Chen et al., 2024).

2.5 Performance and Resource Utilization

In Performance Evaluation, we have Key Metrics Latency. This term refers to the time
taken for a system to respond to a request. It is affected by inter-service communication and
network overhead. Throughput Indicates system efficiency — For each second of continuous
operation that involves such requests to process how many messages does it get roundly turned
out Around 200? CPU and Memory Usage The resource consumption required for
infrastructure to be kept at performance levels Maintain high trafficThere are a few differences
between Monolithic and microservice architectures. But, the dynamic scaling made possible
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under these conditions with microservices challenges how appropriate one will indeed prove
to your attitude rests entirely on disposition or preference.

2.6 Refactorability in Software Systems: Transitioning to Microservices

The ease with which one piece of code can be changed is called refactorability.
Motivations for refactorability involve: Code modularity: a well-structured monolith can more
easily be refactored into microservices. Dependency management: Pulling apart tightly
coupled components Database design: Moving from one big database to many little databases
means consideration is needed as to its layout and how it can be made fault-tolerant. Poorly
designed monolithic applications throw up formidable challenges to refactoring, necessitating
incremental migration strategies and the use of well-defined decomposition processes.

2.7  Theoretical Summary: Foundations for Implementation

This chapter explained the basics of monolithic and microservices designs. It also
discussed how to scale them, measure their performance, and the challenges of making changes
to them. These ideas lay the foundation for the experiments discussed in the following chapters.
In these experiments, a large system will be changed into smaller services to see how it affects
speed, resource use, and ease of maintenance.
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Chapter 3. Literature Review

3.1 Overview of Monolithic and Microservices Architectures

The growth of software architecture has seen a transition from centralized monolithic
systems to more decentralized microservices. Monolithic architectures have been the standard
followed architecture, where the entire functionality of the application (including user
interface, business logic, and the data access layer) is tightly coupled, resulting in a single
deployable unit. Thereby creating an efficient architecture, when building small to medium-
sized applications that are less likely to scale. However, since all software components co-exist
in a tightly coupled state in Monolithic systems, some issues arise. The tightly coupled state
creates inflexible deployments, a high dependency between the business logic and components,
and less scalability. Since all the components of a monolithic system are tightly coupled when
deploying let’s say a single module in the system, the entire application has to be deployed.
Scaling Monolithic architecture requires replicating the whole system and not the modules of
the system that requires scaling. As a result, Sharding a monolithic system resource is usually
inefficient, if one module or application section experiences a sudden spike in traffic, it will
still be limited by the system resources (Kassetty and Chippagiri, 2025).

A Monolithic system is difficult to maintain, with a tightly coupled state, a change at one end
(module) causes an effect on the system as a whole. While developing new functionality on an
existing monolithic system, the entire system must be first set up before development begins
which is inefficient and time-wasting, as it could be avoided by developing new functionality
as a loosely coupled service to be integrated on successful development and testing.
Development is quite difficult since all components need to be constantly built and redeployed,
to ensure the system remains functional. Additionally, already-built applications with a large
customer base are faced with the challenge of downtime. Once a change occurs in a monolithic
deployment, you have to redeploy the entire application which causes downtime during the
system update. This approach is unlike microservices’ continuous development which seeks to
isolate sections of the application during the development cycle and integrate after proper
testing.

In response to these disadvantages, the microservices architecture has become a popular
alternative, especially for large-scale, cloud-native applications. Microservices break down
applications into a collection of small, independently deployable services that communicate
via APIs. Designing each microservice around a specific business capability it allows for higher
modularity and technical flexibility. Microservices can independently scale specific
components rather than monolithic systems that inherently need all components, saving system
resources and improving fault isolation. This means that any outages in one service don’t
necessarily have a negative impact on the whole system, increasing the resilience and reliability
of the system. Furthermore, microservices enable faster development cycles since teams can
concurrently work on different services without negatively impacting the entire application.
Nevertheless, despite these aforementioned benefits, microservices do not come without
additional complexities, including increased network latency due to inter-service
communication, challenges of maintaining data consistency across distributed services, and the
need for advanced monitoring and orchestration tools (Wang, 2024).

The transition from monolithic to microservices architecture is not straightforward. It poses

technical and organizational challenges, such as decomposing tightly coupled components,
dealing with distributed data, and ensuring reliable inter-service communication. One of the
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most common migration tactics is the Strangler Fig Pattern, where microservices are introduced
gradually alongside the monolithic system. This allows teams to slowly adopt microservices
without having to do a complete system rewrite. Even so, the migration process is nontrivial:
it can involve large efforts in the service decomposition process, APl management, and
infrastructure provisioning. Operational overhead increases due to the large number of
independent services that teams have to manage, meaning there is a greater need for automated
deployment pipelines, container orchestration (such as Kubernetes), and service discovery
mechanisms. Security is another issue: teams must be cautious to secure the large attack surface
introduced with the higher number of microservices, and strong network security mechanisms
must be put in place to protect inter-service communication. Furthermore, the network latency
introduced by S2S (service-to-service) calls and duplication of code (such as libraries,
functions, types, and models used across services) are also two more challenges.

Although challenging, research has shown that once successfully transitioned, systems built
using microservices see significant improvements in scalability, agility, and fault tolerance,
especially in distributed cloud environments. Research also shows that microservices
architectures are better suited to handle heavy traffic loads than monolithic applications. By
allowing horizontal scaling, microservices can fulfill higher demands as only the necessary
services need to be scaled instead of the entire application. Organizations such as Netflix and
Amazon have presented the success of microservices by taking advantage of independent
service scaling to improve system responsiveness and reduce operational costs in the long term
(Chen et al., 2024). However, microservices do not come without sacrifices, and organizations
must determine whether the complexity of microservices is worth the scalability and
maintainability benefits. Monolithic architectures may still be suitable for simple applications
with relatively straightforward workflows and a limited need for scalability.

Table 3.1:Comparison of Monolithic and Microservices Architectures(Powell and Smalley, 2024)

Feature Monolithic Microservice
Architecture Architecture
Scalability Vertical scaling (entire | Horizontal scaling
system) (independent services)
Deployment Whole system | Independent  service
redeployed deployment
Technology Stack Unified stack Multiple stacks
allowed
Fault Tolerance Single point of failure | Failures isolated per
service
Development Speed Slower due to | Faster due to team
dependencies autonomy
Operational Lower Higher (requires
Complexity orchestration)

A summary of direct comparison between the monolithic and microservices architectures is
provided in Table 3.1. The main advantages and disadvantages of these architectures are related
to scalability, deployment flexibility, resilience to faults, and operational complexity. The
decision between using monolithic or microservices architectures depends on a number of
factors including the scale-out requirements of an organization and the availability of resources
for development and operations. As summarised in Table 3.1, monolithic systems are preferred
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where smaller applications with a lower number of application workflows need integration
while microservices are suitable in highly scalable distributed systems where sub-services of a
system need to scale independently from each other.

As software systems continue to evolve, the debate between monolithic and microservices
architectures remains relevant. While monolithic architectures offer simplicity and lower initial
costs, microservices provide greater flexibility, scalability, and fault tolerance, making them
more suitable for large, complex applications. The decision to migrate from monolithic to
microservices should be guided by an organization’s specific needs, technical capabilities, and
long-term scalability goals. Ongoing research and development continue to address challenges
associated with microservices adoption, particularly with automated refactoring, distributed
data management, and inter-service communication. As more organizations transition to
microservices, best practices and strategies for architectural transformation will continue to
develop, ensuring informed decision-making in selecting the most efficient architecture for an
organization's operational and scalability requirements.

3.2 Refactorability: Definition and Importance

Refactorability is a classic quality that indicates how easily a system can be
restructured and optimised without changing its original behaviour. Refactorability is a
fundamental concept in software engineering. This reduces the complexity of migration,
handles technical debt and helps in long-term maintainability. It helps to make gradual
enhancements and seamless decomposition of any tightly coupled code with migration easier.
That is, refactorability is the extent to which existing code or a system is amendable to
refactoring. module boundaries and least interdependencies in monolithic systems help in
easier refactor than those with tightly coupled components containing interlinked code and
these components need to be rewritten almost completely (Sulkava 2023). This means rest that
how refactorable a monolithic system is, affect how much well organisations could able to
move toward microservices as apart from without flexibility architecture there then exist a a
lot of migration challenges within place. Some of them are data consistency problems,
performance issues due to inefficient service decomposition and low communication overhead
between multiple services (Rathod, Joseph and Martin, 2023).

Even beyond migrating software when we look at the importance of refactorability. It applies
in turn to scalability, system resilience, and development agility. A refactored system, for
instance, can help you to adopt domain-driven design (DDD) and therefore extract
microservices out strategically plus guarantee that services stayed loosely coupled and
independently deployable. Decreased refactorability may motivate organizations to push
forward with an anti-pattern they call monolithic microservices that also introduces
performance bottlenecks and additional cost for compensating them (Alongi et al., 2022).
Even further, when adapting microservices, the database refactoring is crucial: a monolithic
database usually requires decomposing the schema or even sharing data with event-driven
deviant microservices to be autonomous. Therefore, it has been discovered through research
that the automated refactoring tools alongside the code maintainability metrics (in other words
the cyclomatic code complexity, dependency analysis etc.) could improve the refactorability
evaluation and the evolution of software (Abid et al., 2020).

Table 3.2: Factors Affecting Refactorability (Monolithic vs Microservices - Difference Between Software Development
Architectures- AWS, 2024)

| Factor | Impact on Refactorability | Challenges in Migration
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Code Modularity Higher modularity: easier | Poorly  structured  code
migration requires extensive
refactoring

Coupling & Dependencies Loosely coupled components | High  coupling makes

are easier to extract decomposition difficult
Database Structure Well-structured  databases | Monolithic databases require
enable smoother migration schema changes or

decomposition

Service Boundaries Clearly  defined service | Undefined boundaries lead to
boundaries help in | service overlap and
microservices extraction redundancy

Scalability & Performance Optimized systems transition | Performance bottlenecks
more efficiently may arise post-migration

The knowledge of these factors is important for assessing the readiness of the system for
moving to microservices. Automated refactoring tools, static code analysis, dependency graphs
and refactorability scoring models can provide information on how easily a monolithic system
can be decomposed. Table above (Table 3.2) provides a summary of the primary factors that
affect refactorability, their consequences and challenges during migration.The knowledge of
these factors is important for assessing the readiness of the system for moving to microservices.
Automated refactoring tools, static code analysis, dependency graphs and refactorability
scoring models can provide information on how easily a monolithic system can be
decomposed.

To mitigate migration difficulties, a number of best practices have been promoted such as
modularizing the monolith, embedding an APl gateway, and migrating incrementally (e.g.,
Strangler Fig Pattern) (AlOmar, Mkaouer and Ouni, 2024). It allows monolithic elements to be
replaced with microservices iteratively, without losing the consistency of the system.
Essentially, refactorability scoring is evolving into a new area of research to measure the
modularity, separation of concern, and also code complexity of the software systems to
evaluate the effort required for their migration to microservices. Over the course of this
evolution, refactorability is one of the key driving factors of software systems that remain
maintainable, scalable, and efficient. This means organizations should invest in refactorability
so that they avoid future bottlenecks whenever business requirements change or when new
technologies come into play.

3.3 Challenges in Transitioning from Monolith to Microservices
There are various challenges organizations face when transitioning from a monolithic
architecture to microservices. These challenges range from technical to operational and

organisational. Despite having many benefits associated with microservices such as scalability,
maintainability and deployment, organisations face many struggles such as, service
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decomposition, data management, inter-service communication, infrastructure complexity,
DevOps challenges and cultural shift (Kamisetty et al., 2023).

One of the major obstacles lies in the service decomposition complexity of microservices is
how to identify service boundaries (i.e. the architectural constraint) while decomposing a
monolithic system into smaller, autonomous units. It is rather difficult to establish hidden and
implicit logical boundaries between services because many monolithic legacy systems are
composed of highly coupled components that interact with each other through intertwined and
shared business logic and database schemas. And Data Driven Design (DDD) is often used to
define microservices based on limited contexts or business capabilities. Inappropriate
decomposition, however, will lead to excessive fragmentation, resulting in overhead associated
with operating too many services. Moreover, in order to refactor a monolithic application into
a loosely coupled microservices system, it will be necessary to introduce significant changes
to the code structure, leading to accumulated technical debt and migration risks.

Another key challenge is data management and consistency. Monolithic applications often
operate with a single centralized database, whereas microservice-based applications feature a
distributed data architecture where each microservice possesses its own database. This
transition necessitates a fundamental paradigm shift in data management, resulting in
transaction consistency, data replication, and synchronization (Samant, 2024). Traditional
database transactions using ACID principles must be superseded by Event Driven Architecture
(EDA) or distributed transaction protocols such as the Saga Pattern to maintain eventual
consistency. However, if not correctly implemented, they can cause data inconsistency, race
conditions, and performance impact.

Inter-service communication introduces its own complexity. While monolithic applications call
functions within the same process, microservices must communicate with each other using
APIs, message queues, or event-driven messaging systems. While REST APIs, gRPC, and
message brokers (Kafka, RabbitMQ) solve this problem, they also come with their own
implementation challenges, introducing problems of network latency, fault tolerance, and
dealing with API versioning (Garimilla, 2024). More issues are introduced with increased inter-
service communication and number of microservices, such as the risk of cascading failures,
resulting in the application for circuit breakers and retry mechanisms to control it to avoid
downtime of the whole system.

Infrastructure complexity is an additional challenge for microservices adoption. Critical
monolithic applications mostly run on a single-server or VM based environment. However,
critical microservices require containerization (Docker), orchestration (Kubernetes) and
service discovery (Mehta et al., 2024). Hosting applications across multiple nodes increases
resource provisioning complexity. As a result, service mesh technologies that manage load
balancing, security, and observability, such as Istio, are difficult to adopt. Debugging
microservices requests without proper monitoring and logging solutions is highly complex,
thus taking into consideration using tools such as Prometheus, Grafana, and the ELK stack is
desirable.

Continuous integration and delivery (CI/CD) requirements also increases deployment and
DevOps burdens. Monoliths must be deployed as a single unit and typically require a minimal
CI/CD effort, whereas microservices require independent deployment of services and hence a
robust CI/CD pipeline, automated testing and rollback capabilities (Sethi and Panda, 2024).
Blue—-Green deployments, Canary releases and Feature Flags become essential to minimize
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down-time and mitigate deployment failures. Organizations have to use infrastructure-as-code
(1aC) tools like Terraform and Ansible to ensure that their microservices environments are
scalable and easily reproducible.

Beyond the technical difficulties, the adoption of microservices also requires organizational
and cultural shifts. Monolithic teams tend to be centralized, whereas microservices follow a
decentralized government (i.e. cross-function teams and DevOps). Organizations should
support training and restructuring of teams in order to enable developers, testers and operations
to take ownership of microservices by understanding distributed systems and distributed
architectures. Resistance to change, the unknowns of unfamiliar microservices, and unclear
governance models can impede migration. Because of this, many businesses settle for hybrid
architectures, keeping some legacy monolithic modules which can become dependencies that
are difficult to manage.

Table 3.3: Challenges in Transitioning from Monolith to Microservices(Al-Debagy and Martinek, 2018)

Challenge Description Impact on Transition
Service Decomposition | Identifying appropriate | Risk of over-fragmentation
Complexity microservices boundaries or under-decomposition
Data Management & | Moving from a single | Increased complexity in
Consistency database to distributed data | ensuring data consistency &
stores transactions
Inter-Service APIls, messaging queues, and | Higher latency, increased
Communication event-driven communication | failure points, need for

circuit breakers

Infrastructure Complexity Need for containerization | High learning curve,
(Docker, Kubernetes) and | increased resource overhead
monitoring tools
Deployment & DevOps | Shift to CI/CD, automated | Need for new tooling and

Challenges testing, and infrastructure as | deployment automation
code (1aC) strategies

Organizational & Cultural | Moving from centralized to | Requires restructuring, new

Shift decentralized teams with | development workflows, and
DevOps upskilling

Addressing these challenges requires a well-defined migration strategy, starting with
modularizing the monolith, adopting API gateways and service meshes, implementing
observability tools, and gradually transitioning components to microservices. A hybrid
approach, such as the Strangler Fig Pattern, can help organizations incrementally migrate
functionalities while keeping the legacy monolith operational. Table 3.3 summarizes the major
challenges in transitioning to microservices.

3.4  Existing Transition Strategies and Best Practices

As systems transition from a monolithic architecture to microservices architecture,
there is a need to have a concrete migration strategy to ensure system stability, scalability, and
efficient operation of the migrated application. It is more than a technical exercise but includes
architectural, infrastructural, and organizational changes (Baumgartner, 2022). There are
different migration strategies available for decomposition from incremental decomposition
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strategies like the Stangler Fig Pattern to complete rewriting strategies (Big Bang Migration).
Domain-Driven Design (DDD), event-driven architectures, databases transition strategies, and
CI/CD automation are some of the best practices required in this phase to ensure a successful
and risk-mitigated migration.

A progressive incremental migration is often preferred to a Big Bang migration as it reduces
the operational risks and gives teams the chance to exercise the microservices before full
deployment. In a incremental migration, monolithic applications are slowly completed into
microservices. It allows organisations to carry on their usual business while optimising their
systems and focusing on their performance. This also means that services can be refactored and
individually scaled without damaging the system as a whole (Santos, 2018). A Big Bang
migration entails rewriting the entire application as microservices. While it might take less time
to complete a Big Bang migration, it poses serious risk to a business as deployment difficulties
might only be detected once the application is complete. Such failures might include inter-
service failures, scalability issues and database bottleneck Depending on particular business
model, companies should choose the way of migration to microservices that compatible to their
current infrastructure and operational requirements .

The Strangler Fig Pattern is a popular incremental migration approach used to achieve a
smoother monolithic to microservices transition. Strangler fig pattern creates a new
microservice along with the existing monolithic functionality, and gradually replaces the
monolithic functionality with the new microservice. The strangler fig pattern eventually
replaces all the monolithic functionality until the newly developed microservices entirely
replaces the monolith. This pattern is the most commonly used pattern for large-scale
enterprise applications that should be up and running throughout the migration process.
Strangler Fig Pattern reduces technical debt, and the risk of a major disruption of the existing
system during migration. Teams can validate the behaviour of microservices before
deprecating the monolithic functionality.

A core tool in migrating to microservices is Domain-Driven Design (DDD), which aids in the
discovery of explicit microservice boundaries. Many monolithic applications suffer from
tightly coupled components, further complicating decomposition. DDD builds the
microservice architecture on business domains, giving autonomy, high cohesion and loose
coupling to the resulting architecture (Manchana, 2021). Furthermore, DDD uses concepts such
as Bounded Contexts and Aggregates to ensure that microservices capture a specific business
function and do not have inappropriate dependencies. Companies using DDD principles to
build microservice architectures can avoid the over-fragmentation seen in some microservice
implementations and allow their microservices to remain isolated and manageable.

Another handy approach in microservices transition is adopting an event-driven architecture
(EDA) to enable asynchronous communication among services (Goniwada, 2022). While the
method of communication between services in monolithic architectures is typically
synchronous and dependent on API calls, EDA enables loose coupling between services while
providing real-time data exchange (Goniwada, 2022). Since services do not rely on each other,
it aids in enhancing fault tolerance, scalability, and responsiveness. Examples of event brokers
used in event-driven architectures include Apache Kafka and RabbitMQ. They serve as
intermediaries between services and enable asynchronous communication via events. This
benefits distributed systems where services must run independently of each other. Event
sourcing is a technique where all state changes are stored as events so that services can recollect
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previous states. By using event brokers like Apache Kafka, EDA improves services'
auditability and reliability (Goniwada, 2022).

One of the difficulties of microservices migration is database management. The typical design
is database-per-service, meaning each microservice owns its independent data store. But in
most real-life cases (this project included), organisations still adopt the shared-database model
due to transaction consistency concerns and operational constraints (Khakame, 2016). While
shared-database simplifies data integrity and transaction handling, it makes services strongly
coupled to each other, resulting in low autonomy and scalability. To address these concerns,
database-transition strategies are introduced, which allow organisations to adopt in event-
driven data synchronisation, CQRS (Command Query Responsibility Segregation) and Saga
Patterns to handle distributed transaction management while achieving consistency of data
across microservices.

Table 3.4: Comparison of Migration Approaches (AlOmar, Mkaouer and Ouni, 2024)

Migration Approach | Advantages Challenges Best Use Case

Incremental Minimizes risk, allows | Requires hybrid | Large legacy

(Strangler Fig | gradual testing and | system management | applications

Pattern) rollout during migration needing
continuous
availability

Big Bang Migration | Faster transition, full | High risk of failure, | Small

adoption of | potential system-wide | applications  or
microservices downtime startups

Hybrid Approach Allows some | Complex system | Organizations
monolithic orchestration, requires | with partial
components to persist | careful planning microservices
temporarily adoption

Although this project does not feature a complete CI/CD pipeline, it is nonetheless an essential
best practice for deploying scalable microservices. The process focuses on automatically
building, testing, and deploying microservices, ensuring that they are released quickly and
consistently. In monolithic deployments, deployment is fairly rudimentary as the entire
monolithic system is deployed as a single unit. Unlike monolithic deployments, microservices
must deploy independently, as one specific service should not be dependent on another service.
Various CI/CD pipeline tools such as Jenkins, GitHub Actions, and GitLab CI/CD facilitate
the deployment of microservices by automating the rollback mechanism, canary release, and
high availability strategy (Baumgartner, 2022). As a result, CI/CD enhances the resilience of
the system, minimising downtime and speeding up development cycles which is critical for
modern cloud-native architectures.

Table 3.5: Best Practices for Microservices Migration

Best Practice

Use DDD & bounded contexts to define clear
microservice bounds

Implement Saga Pattern for
distributed transactions.

Category
Service Design

Data Management managing
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Deployment Automate CI/CD pipelines to enable frequent
and stable releases.

Observability Use centralized logging & distributed tracing
to monitor microservices.

To ensure a successful transition, organizations must adopt best practices tailored to their
specific use cases. Table 3.4 provides a comparative overview of migration approaches, while
Table 3.5 outlines best practices for a structured and risk-minimized transition.

3.5 Discussion on Literature Review

The transition from monolithic architectures to microservices represents a paradigm
shift in software engineering, as it provides a solution to the challenge of scalability,
maintainability, and operability that arises from a tightly coupled system design. The literature
review about this topic examined theoretical perspectives, challenges, migration strategies, and
best practices, which address not only the strengths of microservices architectures, but also the
entanglement of their adoption. Monolithic architectures provide simplicity, centralised
management, and low operational overhead. However, they cannot provide the flexibility and
scalability that modern cloud-native applications require. Microservices architectures, on the
other hand, offer horizontal scalability, independent deployability, and fault isolation,
providing freedom (and chaos) that modern large-scale distributed applications require.
However, these benefits come with a cost of complexity in service decomposition, data
management across independent services, inter-services communication, and infrastructure
orchestration (Baumgartner, 2022).

A crucial driver of migration success relates to the monolithic system being refactorable,
meaning the extent to which modular components of code can be extracted and converted into
microservices. Code modularity, code coupling, database design and service boundaries are
major factors that determine the complexity of the migration process. Research has shown that
using automated refactoring tools, code maintainability metrics and structured decomposition
techniques improve the monolith system's readiness for microservices adoption (Sulkava,
2023). Additionally, resolving technical debt prior to the migration effort reduces risk for
performance bottlenecks, redundant services and high operational overhead.

The literature review highlights the main issues encountered by organizations when migrating
legacy applications to micro-services which includes service decomposition and its
complexity,  data consistency, inter-service communication overhead, infrastructure
complexity, and DevOps automation requirements (Kamisetty et al., 2023). In addition to
decoupling components from the monolith, organizations shall take due care necessary in
defining service boundaries such that micro-services do not tend to exceed beyond manageable
limits by over-decomposing and fall into the micro-service anarchy trap (Samant, 2024). To
achieve appropriate granularity and enclosing of business logic, organizations relying on
micro-services tend to adopt Domain-Driven Design (DDD). Without a proper governing
mechanism, the complexity tends to increase and eventually end up with a non-functional
system. Therefore, within any system employing micro-service architecture, finding a perfect
balance between DDD and the organization's capability to handle micro-services plays an
important role in building robust software systems. On the other hand, for an enterprise system
deploying a micro-service architecture, it becomes essential to ensure distributed data and
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transaction consistency between the micro-services. Now, needless to say, consistency can be
achieved by introducing dependencies between the microservices but that will go against the
concept of having loosely-coupled or independent deployable services. Therefore within a
distributed system, managing the scale of the application while preserving consistency and
availability to its client(s) becomes a prime factor for successfully adopting a micro-services
architecture. Organizations adopting micro-services started employing patterns like event-
driven architecture (EDA), CQRS, and the Saga Pattern within their systems to ensure data and
transaction consistency. Each of these patterns presents a different view on how data and
consistency can be achieved at scale without making any compromises on reliability. For an
enterprise system deploying a micro-services architecture, the inter-service communication
overhead can become a massive pain point for the organizations. As the volume of micro-
services increases, then so does the network traffic and the number of inter-service requests.
Within a distributed system, having robust infrastructure that can handle concurrent requests
at such a scale becomes an essential factor for successfully adopting a micro-service
architecture. Due to the need of having robust APIs to serve their client requests and process
inter-service requests, organizations tend to adopt more APIs within their implementation. This
in turn puts more pressure on developing a robust API gateway and APl management services
(Garimilla, 2024). Besides evolving the decentralized architecture and hosting services using
containerized infrastructure with containers like Docker, Kubernetes, etc., event-driven
systems must possess proper service discovery mechanisms to handle dynamic
registration/deregistration of micro-services and process concurrent requests at scale. Though
organizations can successfully decouple services from the monolith, it becomes an overhead
for organizations to then manage the deployment, operation, and monitoring of such large
infrastructure that, as a whole, forms the distributed system. It evolves an organization's
capability to manage such large decentralized systems by introducing automation in delivering
infrastructure-as-code CI/CD pipelines, and implementing DevOps tools to closely monitor
and track infrastructure and their operations.

Various research papers in this field address these challenges and list incremental migration
approaches, such as Strangler Fig Pattern, which enables organizations incrementally move
towards microservices, without disturbing the functioning of a legacy system. Big
organizations like Netflix and Amazon have successfully updated their monolith system into
microservices using this approach, minimizing risk in regular operations. Big bang migrations
on the other hand involves replacing the old system completely, which exposes to the high risks
of failure, downtime of systems and scalability issues. Automation of CI/CD pipelines,
observability tools (Prometheus, Grafana, ELK Stack) and infrastructure-as-code are some of
the best practices which have been established over time to improve deployment as well as
improve system resilience and availability.

Although microservices offer concrete benefits in terms of faster development velocities,
unified scalability, and enhanced maintainability, they also pose a lot of complexity that
requires thorough preparedness, robust architectural setup, and organizational alignment.
Microservices may not be appropriate for all applications, with organizations needing to
evaluate whether the overhead of adopting microservices will add business value to the
organization while satisfying scalability and performance requirements for the system. The
consensus among literature suggests that while monolithic architectures are still a valid choice
for smaller applications with limited scaling potential, microservices architectures are better
suited for large-scale, distributed applications. Further research continues to explore automated
refactoring, Al-driven service decomposition, and greater security improvements to smoothen
microservices transition; ultimately, businesses should determine how migration could be
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accomplished based on an organization's systems, technical knowledge and business needs in
the longer run.
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Chapter 4. Methodology
4.1 Overview

The change from monolith to microservices design has actually come to be a main
emphasis in contemporary software program design driven by the requirement for scalability,
modularity, and also maintainability in dispersed systems (Barzotto and Farias, 2022). Standard
monolith architecture while simpler to establish, has a tendency to end up being inflexible as
well as tough to range as they expand causing difficulties in implementation, upkeep, and also
group efficiency. Microservices architecture style on the other hand allows a decentralized and
also service-oriented strategy where independent solutions interact by means of lightweight
methods enabling better versatility, boosted fault tolerance, and a lot more reliable source
application (Chaieb, Sellami and Saied, 2023). Nonetheless, regardless of these benefits, the
procedure of refactoring monolith architecture right into microservices architecture stays
extremely intricate, calling for methodical disintegration approaches as well as detailed
assessment techniques to ensure efficiency enhancements (Seedat et al., 2023).

This research study intends to review the refactorability of transitioning monolith systems right
into microservice systems by examining code intricacy scalability, latency plus system
maintainability. The technique utilized in this research study includes regulated movement
experiments where a single system is significantly taken apart right into microservices adhering
to the finest methods in component as well as solution orchestration (Nitin et al., 2023).
Different building patterns such as Domain-Driven Design (DDD) Strangler Fig Pattern and
also Service Decomposition based upon service capacities are discovered to evaluate their
efficiency in microservices fostering.

To accomplish an extensive contrast both qualitative as well as measurable efficiency metrics
are made use of. The research takes a look at code intricacy (Maintainability Index, Cyclomatic
Complexity) system latency, demand handling capability, and also mistake resistance.
Empirical examinations are carried out making use of benchmarking devices such as JMeter
for lots screening as well as profiling structures for examining dispersed purchase expenses.
By implementing tension examinations plus regulated scalability experiments this study
examines exactly how microservices styles affect action time, straight scaling effectiveness as
well as general system durability (Chaieb, Sellami and Saied, 2023).

A considerable emphasis is placed on disintegration methods, making sure that solution limits
are well specified as well as do not present unneeded interaction expenses that can adversely
influence efficiency. The research study additionally attends to usual movement obstacles such
as data source refactoring solution exploration, APl Gateway assimilation, and also reliance
administration (Seedat et al., 2023)

Additionally this research study follows a speculative method, using a real-life study to
determine the effect of microservices movement on software program refactorability. The
outcomes add to a structured decision-making structure for companies thinking about the
monolith-to-microservices movement giving understandings right into when as well as just
how such a change must be taken on. By developing sensible standards for solution
disintegration, efficiency adjusting plus building optimization, this research study uses a
thorough point of view on modern-day software application scalability obstacles plus services.
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4.2  Proposed Framework/Model/Technique

4.2.1 Architectural Design of Monolith vs. Microservices (Strangler Fig Pattern)

A monolithic architecture is made up of a single application. All functionality is
managed within a single application, which means that user interface, business logic and
database access code are held together (Barzotto and Farias, 2022). When an application is first
developed, a monolithic approach is simpler to develop, test and deploy. However, monolithic
systems create serious issues as the application grows. A monolithic application is tightly
coupled, change deployments become increasingly inflexible as the code base grows.
Development teams are imposing a slowdown in the release cycles and require increasingly
complicated deployment processes (Chaieb, Sellami and Saied, 2023). A monolithic
application imposes a linear scalability constraint, there is no smoothing of workloads as the
modules are dependent on a shared codebase, lead all CI/CD pain points to be exaggerated
since a small code change in a single module necessitates building and deploying again the
entire monolithic system rather than being able to scale application components independently
of one another. Moreover, as more developers work on the same codebase, merge conflicts,
regression issues, and technology constraints become common issues and prevent
experimentation with new technologies, which can impede innovation and leave organisations
competing in an ever-changing landscape of new framework implementations (Chaieb, Sellami
and Saied, 2023).

Modern software systems are moving towards microservices-based architectures to achieve
scalability, modularity, and independent deployment. Rewriting the whole monolithic system
in one go is infeasible and a high-risk endeavour for most enterprises. In this study, the
monolith system was integrated into microservices progressively using the Strangler Fig
Pattern. The Strangler Fig Pattern is a migration strategy that allows for incremental refactoring
from monolith components to extract independent microservices. This gradual approach
enables developers to refactor the system without affecting system functionality (Seedat et al.,
2023). The pattern derives its name from the growth habit of strangler fig trees: as strangler fig
trees grow around their host, the monolith and microservices live alongside each other,
allowing the system to grow (in functionality) and die (deprecated functionality) incrementally
rather than drastically in a big bang cutover.

The migration process can be broken down into the following three phases. The monolithic
components are analyzed and prioritized by business functionality and system dependencies
for extraction. User management, product catalog, order processing and payments were
identified as some of the most critical modules to extract in the first phase. Microservices are
built alongside the monolithic parts, running in parallel to them and operating on a single
database. All traffic is moved to a router, which starts to redirect it to microservices where
possible, while the monolithic application continues to serve legacy traffic. As stability and
performance are further validated, more and more traffic is rerouted from the monolithic
system until all prioritized parts are entirely in the hands of microservices. The monolith is
retired at the end of the process.
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Figure 4.1: Monolithic vs. Microservices Transition (Source: (Monoliths to Microservices using the Strangler Pattern, no

date))

The monolithic system proceeds to be replaced with microservices as the system remains stable
as shown in Figure 4.1. The migration journey comprises three key phases. Firstly, monolithic
components are analyzed and prioritized based on business functionality, and system
dependencies are extracted. Key modules such as 1. user management 2. product catalog 3.
order processing 4. payments are identified as initial candidates to be migrated. Secondly,
microservices are implemented in conjunction with the Monolith and run parallel with a
common database. By a routing mechanism, traffic is routed to microservices wherever
possible, while the monolithic appstem are proven, the traffic is gradually moved away from
the monolithic system till the key components are replaced, and the monolithic system is
decommissioned.

Once microservices are in place, they only talk to each other through RESTful APIs and not
through in-memory function calls as in the monolithic architecture. The system doesn't use
asynchronous messaging tools such as Kafka or RabbitMQ or gRPC, so the communication
model is synchronous and relatively simple. Each microservice implements one business
function and exposes a set of well-defined HTTP endpoints such that other services can call
them. The following services have been refactored out of the monolithic system:

e API-Gateway: The service required to forward all requests coming to the microservice
to other services.

User Service: Authentication, registration and user profile management.

Product Service: Product details, inventory and product categorisation management.
Order Service: Order management and tracking management.

Cart Service: The service where basket information and related transactions are kept.

Sharing a common relational database system, this pattern enables all microservices to connect
to a single database instance; concurrency is ensured without event-driven data replication.
Nonetheless, with higher service coupling, as well as potential bottlenecks for concurrent
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queries to a central database, there are trade-offs. Database index, connection pool, and query
optimization are some of the applied solutions for these challenges.

Microservice Monolith
Architecture Architecture

User Request ({{domain}}microservice)
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Figure 4.2: Structural Differences Between Monolithic and Microservices Architecture

As shown in Figure 4.2, a monolithic architecture is split into multiple services in the
microservices architecture, with application components (microservices) that are
independently managed and operated, but still share the same database - PostgreSQL, to handle
all of the data. The traditional monolithic approach (on the right) combined all the
functionalities into a single application, Monolith with 8080 port. consisting of user
management, product catalogue, cart, and order processing that works together with the
database. This design has various disadvantages such as scalability limitations, complex
deployments, and tight coupling between components.

On the left we have the refactored application into the services (User with port number of 8082,
Product with port number of 8083, Cart with port number of 8084, Order with port number
of 8084), where each microservice runs in its own scope and have own deployment. There is
API-Gateway with port number of 8081 (Microservices Pattern: Pattern: APl Gateway /
Backends for Frontends, no date) in front of them that acts as an entry point to clients. API
Gateway handles requests from clients and forwards them to the specified microservice.
Another change we can notice is that the microservices are using the single shared database
created in PostgreSQL, in this case we can leverage the consistency in regards of the data that
database will provide and it keeps refactoring/migration simpler as well.

This architecture adopts the Strangler Fig Pattern to incrementally replace the monolithic
system component by component with microservices. The routing of traffic to the
microservices is done progressively through the APl Gateway until there is no traffic hitting
the monolithic system and it can be decommissioned. This allows for a safer migration path
but also introduces additional complexity. Increased overhead handling APIs, potential for
database contention issues, or having to deal with transactions across services.
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4.2.2 Service Decomposition Strategy

In the microservices architecture field, selecting an appropriate service decomposition
strategy can help improve scalability and maintainability, and align development efforts with
business requirements. Various service decomposition strategies have been proposed and put
to practice.

A popular strategy is decomposing by business capability which is an approach to follow when
designing and implementing Microservices. This simply refers to what a business does in order
to generate value i.e. its responsibilities. For example, an E-commerce application might have
services such as order management, payment management and so on. Decomposition of
applications by business capability ensures the services are aligned with business processes
(Strangler fig pattern - AWS Prescriptive Guidance, no date)

Another phenomenon is one alternative method that is very popular is decomposition by
subdomain. This can be seen as an application of Domain-Driven Design (DDD). The key
characteristic of this approach is to identify the different subdomain of the application domain
and create microservices corresponding to the subdomains. This approach maintains the
domain’s integrity but de-correlates the different subdomains so that each subdomain can
function independently of other subdomain. A practical example might be of a banking system
where separate services might be built for user accounts, processing transactions and loans;
each of these then work as independent applications unto themselves and encapsulate the entire
domain knowledge (Strangler fig pattern - AWS Prescriptive Guidance, no date)

The Strangler Fig Pattern provides a practical strategy to incrementally migrate from
monolithic architectures to microservices. The Strangler Fig Pattern proposes that incremental
refactoring of monolithic components into microservices, allows the integration of new
functionalities to work alongside legacy code while minimizing disruption. Once enough new
functionality has been refactored into microservices, monolith core dwindles away and is
replaced by microservices. This is an extremely useful strategy for large and complicated
systems to rewrite everything from scratch would be time consuming and high risk (Strangler
fig pattern - AWS Prescriptive Guidance, no date)

Furthermore, another approach is decomposition by transaction, in which the services are split
up based on transactional boundaries. This way, a service can manage its own transactions
without necessarily having to meddle with distributed transactions and reduce the transactional
complexity that comes with it. Such method increases the consistency of data within a service.
(Strangler fig pattern - AWS Prescriptive Guidance, no date)

When writing about these strategies, one option is to add some visual approaches. For example,
a comparative table listing the characteristics, pros, and cons of each decomposition strategy
could help summarize information for readers. Diagrams showing the evolution of a monolithic
software architecture into a microservices software architecture through Strangler Fig Pattern
could also illustrate moves from a practical aspect.

In conclusion, choosing the right decomposition strategy is critical to the successful adoption

of a microservices architecture. By leveraging these strategies, organizations can decompose
monolithic systems into more agile and scalable microservices-based architectures.

Table 4.1: Comparison of Service Decomposition Strategies(Chaieb, Sellami and Saied, 2023)
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Decomposition | Ease of | Risk Level Scalability Data

Strategy Implementation Management
Complexity

Business Medium Medium High Medium

Capability-

Based

Domain Driven | Hard Medium High Hard

Design (DDD)

Event-Driven Medium High High Hard

Decomposition

Strangler  Fig | Easy Low High Medium

Pattern

Service decomposition is fundamental to the microservices architecture and can be achieved in
different ways such as business capability-based decomposition, domain-driven design (DDD),
event-driven decomposition, and Strangler Fig Pattern. Business capability-based
decomposition, for instance, ensures that microservices align with underlying business
functions, which means that they can often be easily developed and maintained by teams
specializing in the target business capability, though it may sometimes be challenging to
implement from unclear service boundaries. Meanwhile, DDD provides modularity and
generally aligns with specific domain context for easier long-term warehouse management but
requires deep business domain knowledge, whereas event-driven decomposition enables agile
asynchronous communication across microservices but makes it harder to ensure data
consistency in the system. The Strangler Fig Pattern is chosen because it enables low-risk and
incremental migration of microservices. Microservices can be incrementally extracted from
monolithic application while the monolith continues to operate fully. In contrast to a big-bang
migration which can be highly risky and hard to implement, microservices can be gradually
implemented with the monolithic system, alongside rollback paths if any needs arise.
Furthermore, the capabilities of the monolith can continue to function during the migration and
be modernized (Strangler fig pattern - AWS Prescriptive Guidance, no date). Overall, the
Strangler Fig Pattern achieves a balance of ease of implementation, ease of scaling services up
and down, and low operational risk can be seen in Table 4.1.

4.2.3 Data Management (Shared Database Model)

Handling Data in a Microservices Architecture Data management in microservices is a
key concern and it can have a substantial impact on the performance and scalability of your
system. Most approached strategy is database-per-microservice, where each microservice has
its database, to enforce loose coupling. However, it leads to problems such as data
inconsistency and ACID violation. Shared Database is an alternative approach, where multiple
microservices can access the same database using a single relational database. A shared
database has obvious benefits such as a simplified data management system. With the use of a
single relational database, services can access freely other service’s data, without the need for
an inter-service communication channel, with the use of local ACID transactions to achieve
consistency and integrity of their data (Microservices Pattern: Pattern: Shared database, no
date).

However, using a shared database in a microservices architecture contradicts the principles of
microservices and can potentially undermine their key benefits such as scalability, resilience,
and independence. By tightly coupling services through a shared database, you risk introducing
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a single point of failure and making services interdependent. This means that if one service
modifies the schema of a table, it could potentially break other services that depend on that
table. So, using a shared database requires careful consideration and management to avoid these
challenges.

An Entity-Relationship Diagram (ERD) represents the data structure. An Entity-Relationship
Diagram (ERD), is a data modeling technique that graphically illustrates an information
system's data requirement and relationships between data. An ERD is a conceptual and
representational model of data used to represent the data structure used. An ERD is a diagram
that shows the relationship of entity sets stored in a database. In other words, ERDs illustrate
the logical structure of databases. At first look, an entity relationship diagram looks very similar
to a flowchart. ERD diagrams are commonly used in conjunction with a data flow diagram to
display the contents of a data store. It is also the blueprint for designing and debugging
relational databases.

updatedAt

El AbstractPersistable

Figure 4.3: Entity Relationalship Diagram (ERD)

In the given ERD (Figure 4.3), you can see entities like Users, Products, Orders, and Carts,
along with their attributes and relationships. For example, the Users entity has attributes such
as user 1D, name, and email, while the Orders entity has order ID, date, and total amount. The
relationships between these entities are also shown, such as a user placing an order or adding a
product to a cart.

In conclusion, while having a shared relational database can simplify managing data and
guarantee consistency in a microservices architecture, it should be considered very carefully.
Balancing the benefits of simplified data access and strong consistency against the potential
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challenges of increased service coupling and reduced scalability is key to deploying
microservices effectively.

4.2.4 Deployment and Scaling

The microservices architecture is deployed using docker, ensuring that each service
runs in an isolated container and interacts with each services through an internal docker
network. The central Postgres database also runs in a central location and all instances of the
microservice communicate through an efficient connection pool to ensure there is no bottleneck
during high user traffic. Git was used as the Version Control System (VCS) for managing
source code and automation of deployment builds. Git VCS enables CI/CD pipelines to fully
automate building/testing and deployment processes. For live monitoring, Prometheus was
used to scrape and collect system metrics such as CPU usage, memory usage, and database
query performance. Prometheus provides an overview of resource metrics and scalability
graphs (Jani, 2024). However, docker also provides in-built monitoring capabilities and
metrics. | am able to monitor container resource usage and performance metrics. This built-in
docker features are able to suffice my current needs however, Prometheus can still be integrated
in the future if my application demands higher levels of observability and advanced monitoring
features.

4.3  Methodology
Describe in detail how the experiments are performed. In the first part, provide an overview of
the process/methodology.

4.3.1 System Design and Implementation

The system is constructed on Spring Boot framework utilized as a backend framework,
PostgreSQL used as a relational database and Postman used as application for API testing.
Spring boot framework provides light-weight, scalable components to process the request,
dependency injection and service orchestration to create RESTful micro-services. Spring data
JPA module easily integrates and we are using it to persist data into the PostgreSQL database.
It follows a layered architecture by splitting the app into controller, service and repo layers.
PostgreSQL is used in the database for database management for maintaining all the relational
data in the database. Because each microservice must share the database for relational data
integrity and consistency. So the persistent interaction with the database for each microservices
iIs maintained through the Spring Data JPA repositories which can be used to execute the
queries on the tables data & through the connection pooling using the Spring Data JPA it helps
in doing the optimal management of connection with the database. This is by how those
schemas of the database are defined through the Entity-Relationship model. So that we can
able to maintain the data for user, product, order and cart consistently across the services. The
system is build with REST API style in where each microservices only exposes a static set of
endpoints that handles the requests. HTTP methods are standard in REST API. Every
interaction is stateless, The behavior of Microservice REST API is really predictable. A
microservice defines one or more well-known endpoints that are used to operate CRUD. | will
describe some main endpoints below:

31



Table 4.2: REST API Endpoints for both Monolithic and Microservice Architecture

Service Endpoints Method | Description

User Service /user POST Create User

User Service Juser GET Login User

User Service Juser/{userld} PUT Update User

User Service /user/{userld} DELETE | Delete User by Id

User Service Juser/{userld} GET Find User by Id

Product Service /products GET Get all Products

Product Service /products/{productld} GET Get Product by productID

Product Service /products/{categoryld} GET Get Product by categorylD

Product Service /products POST Add a Product

Category Service | /categories GET Get Categories

Category Service | /categories/{categoryld} GET Get Category by categorylD

Category Service | /category POST Add category

Address Service | /address/{addressld} GET Get address by addressID

Address Service | /address/{addressld} POST Add address by userID

Address Service | /address/{userld} PUT Update address by
useriD

Address Service | /address/user/{userld} GET Get User Address by userld

Cart Service [cart/{cartld} GET Create a Cart with userld

Cart Service [cart/{productid}/item Add Item to Cart

Cart Service [cart/{userld} DELETE | Delete Cart by userld

Cart Service [cart/{cartld}/{cartltemld} DELETE | Delete Cartltem from Cart
given cartldemid

Order Service /orders POST Create an order

Order Service /orders/{orderld} GET Get Order by orderld

Order Service /orders/{orderld}/total GET Get Total Amount by orderld

Order Service /orders/{orderld}/status PUT Update Order Status by
orderld

As showed in Table 4.2: Comparison of Monolithic and Microservices APl Endpoints the
BASE URL API is the only difference between them, while all REST APIs have the same
structure. Because of this, the transition from monolith to microservices is fairly seamless, and
monolith services can continue to make the same requests but instead benefit from the ability
to independently scale and deploy microservices, and by changing the main URL only the
existing consumers of this APl can communicate seamlessly with monolithic or microservices
systems, it provides backward compatibility to prevent breaking changes, and facilitates the
migration process. For request testing and Validation of the API steps.

For request testing and validation of the API steps. Perform and validate REST API calls,
make various HTTP request methods, and validate the response as well We write postman
collections for API testing, which is done to make sure each of the endpoints is working as
expected. The following is an excellent designed and implemented RESTful microservice
architecture with Spring Boot and an example of using PostgreSQL for TRU data persistence,
database optimization strategies, and API integration tests with the testing framework.
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4.3.2 Evaluation Setup

The assessment of the system is designed to test how well the microservices architecture
performs in terms of scalability as well as how efficient it is compared to the previous
monolithic implementation. The primary objective is to assess the performance of the
microservices for concurrent requests, database operations, and the consumption of system
resources based on different loads. The work has the following definition when it comes to the
evaluation. Deploy in a deployed-controlled environment both architectures. Simultaneously
co-host both the architectures in a machine and Perform Performance testing on API response
time and track and monitor the resource consumption.

System is containerized in Docker so all of Microservices are hosted in isolated Docker
container and communicated to each other with shared PostgreSQL database. To construct the
test for experimentation, a personal computer with an 8-core CPU, 16GB memory and SSD
storage was used, providing identical benchmarking conditions. We collect logs for all API
including the database operation, and there are accumulated system metrics through
Prometheus but not limited to CPU utilization, memory- usage, time spent on the database
query and throughput of requests.

Using Apache JMeter, a series of performance tests are performed in which varying no. of users
accessing the project APl and making their respective requests are made to study how the
system responds to different types and volumes of traffic. Some of the scenarios that are
implemented as a test include, to a huge amount of simultaneous requests. Performance is
evaluated based on factors such as the time it takes to handle a request, the time it takes to pass
a query to the database, system latency, and the time to process the request, etc. It also assesses
if the increased communication creates further database bottlenecks, through the common
PostgreSQL database to serve multiple microservices concurrently executing their transactions.

Additionally, there are Git-based VCS that it use to maintain the deployments and code changes
during the evaluation time period to keep the reproducibility and consistency of the tests
contained. They were able to analyze the performance information that they gathered to show
if the move from monolithic architecture to microservices achieved real benefits in scaling,
fault tolerance and efficiency. By evaluating the system metrics, this study provides a
quantified evaluation of the benefits and related costs of migrating from monolith to
microservices.

4.3.3 Case Study/Experimental Setup

The aim of this study is to measure the performance difference by evaluating some key
performance metrics for monolithic and microservices architectures at realistic workloads. The
performance metrics are CPU utilization, response time, and memory consumption as |
mentioned before in Research Questions part. These metrics will help us understand how each
architecture behaves under different loads. The second key aspect is scalability. In this study,
I’m interested to know what are some of the scalability limitations (if any) of both architectural
styles by looking at how well each architecture is able to support increasing user requests.
The third key aspect is refactoring effort. The refactoring effort is quantified by the time spent
for system decomposition, code refactoring, and debugging based on firsthand experience.
Moreover, | try to use help of peer-reviewed studies. The technical challenges are the internals
of the refactoring effort. The technical challenges are identified by looking at some of the
problems that may arise during migration such as those associated with database contention,
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inter-service communication overhead, containerization, and some others. Here, the major
technical challenges encountered during the refactoring process is also explored. The hardware,
infrastructure and operational cost for both architectures together with their maintenance cost
are the economic aspects to be evaluated by this study. These findings are supported by
peer reviewed papers and information made available from online resources. These will be
discussed on Results and Discussion (Results and Discussion) part more.

All experiments are conducted on a MacOS-based machine with 16GB RAM and an 8-core
CPU, keeping a fixed experimental setup for consistency. Both architectures are running a
cluster of Dockerized microservices, with each microservice deployed in its own Docker
container and the PostgreSQL database being a single point of entry. In such a setup,
differences in performance due to architectural differences rather than the hardware. The screen
shot of the case study application that is used for testing is simple e-commerce application
which has user registration, browse products, manage cart, place order, and make payment.
WIDE is an application that simulates a real-world workload so that you can see how monoliths
and microservices will perform in a real-world environment.

Three testing scenarios are executed to evaluate system performance in detail:

e Scenario 1: Low Traffic Load: This simulates a single user interaction with the system
to set a baseline performance.

e Scenario 2: Moderate Concurrent Requests: Simulates several users visiting
products, adding items to their cart, and making orders at the same time.

e Scenario 3: Stress test with heavy traffic: Creates thousands of simultaneous
requests for the system and evaluates its scalability, responsiveness and resource
consumption in extreme load conditions.

An assessment which uses Apache JMeter to perform simulation of user action and aggregate
concurrent HTTP requests, and delivers real-time feedback on system performance by means
of response times and requests per second. Besides, Docker’s default command docker stats
is used to follow CPU, Memory, and Network usage from each microservice as well as
monolithic application running under it. We have integrated Prometheus so that we can capture
high level metrics such as throughput, APl execution times, database query execution times,
and resource allocation. It analyzes logs to identify bottlenecks, service failures, and latency
differences between architectures.

The study anticipates that microservices will exhibit better scalability under high-traffic
scenarios (Scenario 3) as they can spread the workload across independently deployable
services. Nonetheless, due to the inter-service communication overhead, microservices may
face increased latency in processing complex transactions relative to the monolithic system.

In refactoring effort, monolith-to-microservices is expected to take substantial development
time, as system decomposition creates problems of service orchestration, APl management and
database consistency. By quantifying migration effort, this study aims to identify if the long
term benefits of modularity and independent scalability can sufficiently offset the initial
complexity of migration.

From a cost perspective, microservices incur new costs related to container orchestration,

service monitoring, and networking overhead, which should be weighed against their utility in
providing improved fault tolerance and maintainability. The study expects that microservices
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can drive higher infrastructure and operation costs, but they bring long-term efficiency gain
through elasticity of resources and independence of services.

This assessment would offer a quantitative comparison between the two systems showing the
benefits and trade-offs of employing microservices-based architecture compared to the
monolithic-based architecture.

4.4  Evaluation Criteria

The comparison between monolithic and microservice web architectures was made based on
six criteria: performance, scalability, refactoring effort, cost, fault tolerance, and
maintainability. Performance metrics include response time, throughput, CPU utilisation, and
memory consumption. Monolithic architectures have better latency if there is low or medium
traffic because it does not have the overhead of inter-service communication, but as
concurrency increases, microservices come into their own as load gets distributed among
several independently deployed services. This was also observed in a performance and
scalability evaluation of monolithic and microservices-based applications where microservices
performed better with increasing high concurrency (Blinowski, Ojdowska and Przyblek, 2022).

Scalability: Monolithic systems are usually scaled vertically i.e. they rely on increasing the
capacity of the single server by increasing CPU and memory. This has limits and can also get
very expensive. Microservices architectures on the other hand allow horizontal scaling i.e.
independent services can be scaled independently based on their demand. This repackaging
allows microservices architectures to be able to scale better, have better fault tolerance and
faster updates. Hence, this architecture would suit large applications and those with growing
users (Ortega, no date). The trade off is the complexity in deployment and monitoring.

Refactoring effort: The migration of a monolithic architecture to a microservices architecture
IS a very large effort. It requires business functions to be split from the monolith to discrete
services, the monolithic database schema to be redesigned to split data storage concerns and
APIs to be developed to handle service communication. This requires careful planning and
execution (Blinowski, Ojdowska and Przyblek, 2022).

Cost Analysis: The following cost analysis will cover both infrastructure & operational costs
In a microservices architecture, we have multiple containers for the multiple services that we
have, an orchestrator which we can deploy these containers & make them available so the
infrastructure cost is more than that of a monolithic architecture. So initially, the cost of a
microservices architecture is more than that of a monolithic architecture just to get it up &
running. But down the line, we do have individually scalable services that optimize the overall
usage of our infrastructure & increase the overall availability of our services (Monolithic vs
Microservices - Difference Between Software Development Architectures- AWS, no date).

Fault tolerance: In a microservices architecture, if one component of the system fails it would
not affect other services or the whole system. Similarly, in a monolithic architecture, a failure
in one of the modules causes a full system failure (Harris, no date).

Maintainability: A microservices architecture allows development teams to work on different
services independently as they can work on modular components. The teams can also ensure
continuous integration and continuous development (CICD) which allows faster updates of the
applications, and easier debugging. However, the deployment and monitoring complexity for
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a microservice architecture is higher and robust DevOps processes are required to ensure
service availability (Harris, no date).

On the other hand, a monolithic architecture, is easier to manage and maintain as there is a
single codebase and a single deployable unit, but can become cumbersome as the application
grows and developers move more slowly as the application grows to avoid being breaking
changes. Monolithic systems also have tightly coupled dependencies which means that in a
monolithic system if an update is made it requires pushing the whole codebase to make the
updates. On the other hand, as a microservices application is running in multiple processes, a
particular service can be deployed without reflecting it in the other services. This makes the
monolithic systems inflexible (Harris, no date).

Table 4.3: Summary of Evaluation Metrics and Their Purpose

Category Metric How it is measured | Why it matters?
Performance Response Time Measured in | Determines  system
milliseconds  using | speed under load
JMeter
Performance Throughput Requests processed | Evaluates system
per second using logs | efficiency
Performance CPU Utilization Percentage of CPU | Evaluates  system
used via Docker stats | efficiency
Performance Memory RAM  used per | Indicates = memory
Consumption request via Docker | optimization
stats
Scalability Max Concurrent | Number of | Measures  system
Requests simultaneous users | load capacity
supported
Refactoring Migration Effort | Time spent | Quantifies transition
(Hours) decomposing complexity
monolith
Cost Infrastructure Cost Compute power, | Compares initial vs.
hosting expenses long-term cost
Cost Operational Cost Monitoring, Evaluates
deployment maintenance costs
expenses
Reliability Failure Recovery | Time taken  for | Measures fault
Time recovery after failure | tolerance
Maintainability Debugging Time required to | Compares
Complexity identify and  fix | maintainability
issues challenges
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Table 4.3 presents a high-level summary of the important attributes of various evaluation
criteria. The evaluation criteria are classified into performance, scalability, refactoring effort,
cost, reliability, and maintenance. (i) Performance is evaluated using response time,
throughput, CPU utilization, and memory utilization. (ii) Scalability is evaluated using the
maximum number of concurrent users and the level of scalability. In other words, the level of
scalability indicates vertical versus horizontal scalability. (iii) The refactoring effort is a
measurement of the effort to migrate a monolith to microservice. Therefore, this metric is only
for the comparison between the monolithic architecture and microservices architecture. We
compared the ease of migration. (iv) Cost is evaluated using the infrastructure cost and
management cost. (v) The system reliability is evaluated using the failure recovery time. (vi)
The level of maintenance is evaluated by debugging complexity.

In summary, while monolithic architectures may offer advantages in simplicity and lower
initial costs, microservices architectures provide superior scalability, fault tolerance, and long-
term maintainability. Organizations should carefully consider these trade-offs in the context of
their specific needs and resources when deciding on an architectural approach.

4.5 Benchmark Algorithms

Study primarily evaluates monolithic and microservices architecture based on different
benchmarking methodologies and performance measurement techniques to compare the
efficiency of the two architecture styles on the grounds of performance, scalability, fault
tolerance and resource utilization. Monolithic and microservices architecture were compared
focusing on key metrics like API response times, system throughput, CPU usage and memory
usage for the applications under different loads. Apache JMeter was used to simulate realistic
workloads by performing load testing on the application and analyzing how effectively each
architecture responded to increasing concurrent requests. System was containerized using
docker for a uniform test environment and PostgreSQL was chosen for database. Performance
of the two architecture was evaluated under the same conditions.

Scalability tests - Differences in vertical and horizontal scaling In monolithic architecture,
scalability is provided by implementing increased memory capacity and solid-state drive for a
centralized machine, whereas a microservice architecture allows for multiple deployments of
the same service at once, allowing load distribution across multiple machines. This essentially
constitutes the main difference between monolithic and microservice architecture scalability.

For database performance, PostgreSQL was tested in both architecture. The intention of these
tests was to benchmark the database performance and to see how having a shared database will
affect the microservices while performing a query or processing transactions. As the
microservices have a shared database(monolithic model) we wanted to identify if there would
be any performance bottlenecks in the database and that there will not be any unnecessary cost
in terms of connection overhead caused by it. Docker Stats was used to monitor these while
resource consumption was recorded.

Fault tolerance testing evaluated the effects an individual service failure had on the system as
a whole. In monolithic architecture, failure in a key component usually causes a catastrophic
system failure, whereas in microservices, the service isolation mechanisms allow other
components to continue the execution. In this study fault handling capability in each
architecture was measured by deliberately killing the services from the execution loop and
monitoring the time it took for them to recover.
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Resource utilization and operational cost analysis has been performed by measuring CPU and
memory usage during different load scenarios. Even though microservices can take more
system resources per transaction, their ability to distribute a load dynamically across system
instances makes them more efficient under the high load.
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Figure 4.4: Vertical Scaling vs. Horizontal Scaling(Perry, 2023)

To explain the basic difference between monolithic and microservices architectures in terms of
scaling, the example in Figure 4.4 (2024) will visually depict how they each scale when under
incremental workloads. The monolithic application scales by increasing the CPU and RAM of
the bare metal server or by upgrading the hardware of the current server (i.e. vertical scaling).
Expanding the single server can even prove impossible if the machine is limited by physical
resource constraints. Furthermore, upgrading the machine to a bigger machine can be difficult
and more expensive than horizontal scaling of microservices. In Figure 4.4, the microservices
architecture represents three smaller versions of an independent service that is responsible for
handling client requests. Horizontal scaling creates numerous smaller instances of independent
services sparingly using the resources rather than using the resources as a whole (i.e. memory
and CPU). Vertical scaling is done by expanding a single machine, whereas horizontal scaling
is done by load balancing across multiple service instances. Moreover, microservices
architectures scale fault isolation since loads are diversified by services instead of reliant on an
individual service under increased network traffic.

The benchmark is providing an elaborate comparison between monolithic and microservices
architecture based on practical experimentations. The results from the experimentations will
be further discussed in Section 5 (Results & Discussion) to conclude on the overall trade-offs
between monolithic and microservices architecture.
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Chapter 5. Results and Discussion

5.1 Quantative Insights from System

This chapter presents the results obtained from the transition from a monolithic
architecture to a microservices-based system. The analysis is primarily driven by quantitative
performance metrics collected using Docker Stats and Apache JMeter, focusing on CPU,
memory, service startup times, and request response times under varying loads. Apache JMeter
is used to simulate concurrent user requests, allowing for a detailed comparison of the system’s
scalability, latency, and throughput before and after the transition.

Additionally, we assess the time spent on refactoring, highlighting key challenges encountered
during the transformation process. A comprehensive cost evaluation is conducted, comparing
hardware, infrastructure, and operational expenses between the monolithic and microservices
architectures. Finally, we discuss the operational complexity and maintenance overhead
introduced by microservices, evaluating its long-term implications.

5.2 Performance Under Load: Docker Stats Analysis

This section presents the CPU and memory utilization metrics obtained from Docker
Stats during load testing of both monolithic and microservices architectures. The tests were
conducted with 1000, 2500, and 5000 concurrent users to analyze how each system scales
under stress. The results focus on resource allocation efficiency, system bottlenecks, and
performance trade-offs.

5.2.1 Monolithic System Performance

Figures 5.1 to 5.4 show the Docker resource consumption of the monolithic system in
different loads. CPU and memory utilization has been captured to illustrate how resource
consumption increases as the number of concurrent users increases. Analysis into this data
presents a good picture of the scalability and efficiency of the monolithic system. By inspecting
these metrics, it is possible to see how the monolithic architecture has been coping with the
load in given situations. Potential bottlenecks, resource consumption patterns and system
resilience capabilities will be highlighted at this stage of evaluation. Furthermore, the data helps
to show the how efficiently this system utilizes the resources when idle compared to when
during peak consumption. These observations create a good overall picture of the monolithic
system as it stands before the conversion to a microservices based system.
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CONTAINER ID
756bca5b1a70
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RAM 2.37 GB CPU 0.13% Disk: 9.16 GB used (limit 1006.85 GB)

Figure 5.1: Monolith Resources in IDLE
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Figure 5.1 demonstrates the base resource usage of the monolith architecture when it is in idle
state. At this point, the CPU and Memory usage is low. There are no requests at this point.
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Figure 5.2: Monolith Resorcues with 1000 User Load
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As shown in Figure 5.2, the CPU load increases significantly when subjected to 1000
concurrent users. The monolithic application struggles with resource allocation, leading to

noticeable CPU spikes.
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Figure 5.3: Monolith Resources with 2500 User Load
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Moving to 2500 concurrent users (Figure 5.3), the memory footprint starts increasing rapidly,
with the monolith showing early signs of resource saturation.
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CONTAINER ID NAME MEM USAGE / LIMIT MEM % NET 1I/0 BLOCK I/0 PIDS
756bcasb1a7@ monolith-db 116.16% 50.54MiB / 7.654GiB 0.64% S52.6MB / 73.8MB 336kB / 102MB 16
780f848992fa monolith-app 293.51% 984.3MiB / 7.654GiB 12.56% 116M8 / 118MB 578kB / 184kB 236

I

Figure 5.4: Monolith Resources with 5000 User Load

In Figure 5.4, 1 illustrate the case of the extreme load (5000 users). As expected, an increase in
resource (CPU and Memory) usage was observed.

5.2.2 Microservices System Performance

Figures 5.5 to 5.8 illustrate Docker resource utilization for the microservices
architecture. These figures provide a detailed analysis of how resource consumption varies
across different microservices under increasing load conditions. By examining CPU and
memory usage, we can assess the distribution of computational demands among individual
services, highlighting the efficiency of resource allocation and potential performance
bottlenecks. Additionally, the data offers insights into how the microservices architecture
scales in response to concurrent user requests, comparing its performance characteristics to
those of the monolithic system. This analysis helps evaluate the benefits and trade-offs of
adopting a microservices approach in terms of resource efficiency, system resilience, and
overall scalability.

CONTAINER ID NAME MEM USAGE / LIMIT NET I/0 BLOCK I/O
26b6c52673b4 user_service . 354.8MiB / 7.654GiB 38.1kB / 50.8kB 86MB / 164kB
b921982538b6 product_service . 286.6MiB / 7.654GiB 38.1kB / 50.8kB 46.4MB / 172kB
66d87f109e5¢c cart_service . 321.9MiB / 7.654GiB 38.1kB / 50.8kB 46.5MB / 172kB
87779¢d02518 microbridge_service . 193.2M1B / 7.654GiB 1.66kB / 0B 29.7MB / 172kB
c5021583c895 order_service ; 323MiB / 7.654GiB 38.1kB / 50.9kB  45.9MB / 176kB

287fe78e7636 shared_postgres A 113MiB / 7.654GiB 205kB / 146kB 24MB |/ 680kB

12.56 GB CPU 0.63 Disk: 8.70 GB used (limit 1006.85 GB)

Figure 5.5: Microservice Resources IDLE

Figure 5.5 demonstrates the base resource usage of the microservices architecture when it is in
idle state. At this point, the CPU and Memory usage is low. There are no requests at this point.

41



CONTAINER ID NAME X MEM USAGE / LIMIT MEM % T ( BLOCK I/0O
26b6c526 user_service % 464.2M1B / 7. B 5.92% B / 2.68MB 86.5M8 / 1
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I

Figure 5.6: Microservice Resources with 1000 User Load

As shown in Figure 5.6, the CPU load increases significantly when subjected to 1000
concurrent users. The microservice architecture struggles with resource allocation, leading to
noticeable CPU spikes.

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/0 BLOCK I/O
26b6c52673b4 user_service 247 .99% 552.9M1B / 7.654GiB 7.05% 3.79MB / 4.07MB 86.5MB /
b921982538b6 product_service 171.65% 567.6MiB / 7.654GiB 7.24% 7.46MB / 9.57MB 47.1MB /
66d87f109e5¢c  cart_service 8.13% 594.4MiB / 7.654GiB  7.58% 3.7MB / 3.11MB 47.1MB /
87779cd02518 microbridge_service 126.02% 529MiB / 7.654GiB 6.75% 20.3MB / 20.4MB 30.6MB /
c5021583c895 order_service 38.96% 506.1M1B / 7.654GiB 6.46% 6.33MB / 4.48MB 46.4MB /
287fe78e7636  shared_postgres 43.16%  132.2MiB / 7.654GiB  1.69% 8.58MB / 12.8MB  24.4MB /

[

RAM 4.00 GB CPU 8 ‘ GB used (limit 100

Figure 5.7: Microservice Resources with 2500 User Load

Moving to 2500 concurrent users (Figure 5.7), the memory footprint starts increasing rapidly,
with the monolith showing early signs of resource saturation.
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Figure 5.8: Microservice Resources with 5000 User Load

In Figure 5.8, | illustrate the case of the extreme load (5000 users). The system reached the
resource endpoints (CPU and memory) demonstrating the bottlenecks of the monolith
architecture.
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5.2.3 CPU Usage Analysis

Examining CPU utilization between these architectures, with user load is a crucial
metric. As processing demands increase, the CPU consumption of both microservices and
monolithic architectures increases. But microservices CPU utilization scales uniquely. Given
the distributed nature of microservices architectures, CPU consumption can vary compared to
monolithic applications. With monolithic systems, all processing is consolidated within a
single application. In contrast, microservices systems distribute this processing across multiple
microservices, potentially incurring additional processing overhead.

Table 5.1: CPU Utilization Data

User Load Monolith CPU Usage(%o) Microservice CPU Usage(%b)
Idle 0.13 0.63

1000 Users 78.2 79.96

2500 Users 79.47 89.86

5000 Users 82.46 94.47

As we look in Table 5.1, we can see that when the system is in its idle state, the monolithic
system is just consuming 0.13% CPU but the microservices is consuming 0.63% CPU. This
small increase in CPU consumption for the microservices is due to overhead of running
multiple independent services, even when there is little user interactions with the system. As
the number of concurrent users increases, there are significant spikes in CPU usage for the both
monolithic and microservices architecture but for 1000 concurrent users, the CPU consumption
measures 78.20% for Monolithic architecture while it measures 79.96% for microservices. At
this benchmark point for both.

As the number of users further increases, CPU utilization in microservices starts to increase
more rapidly than in monolithic systems. At 2500 users, monolithic CPU usage is roughly
constant at 79.47% compared to microservices which take higher usage of 89.86%. This trend
also follows when running 5000 users which monolithic CPU usage is 82.46% compared to
microservices of 94.47%. These results show that although microservices have the advantage
of distributing more evenly, there is a higher computational cost involved when switching tasks
between different services.
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Figure 5.9: CPU Utilization Trends
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The graphical representation from Figure 5.9 shows another case of higher CPU demand from
both of the architectures under some load. The monolithic architecture exhibits a much
smoother curve when handling CPU usage, gradually increasing going into higher user
requests. Meanwhile, Microservices show a gradual and steeper curve, meaning that the more
users that are trying to access the system, more CPU resource is used in an exponential way.
This demonstrates one of the problems with microservices, which are processing overheads.
Compensating increased CPU usage for better system scalability.

This analysis of CPU utilization reveals that monolithic systems exhibit a stable and anticipated
CPU workload, while microservices scale functionality, but at a higher CPU workload cost.
The numerical data of the CPU information is shown in Table 5.1, which illustrates how
microservices require increasingly more processing power as the load increases. On the other
hand, Figure 5.9 depicts this data graphically and confirms this trend, indicating that the
scalability provided by microservices suffers from increased resource demand. This suggests
that although greater activate scalability is offered in combination with the advantage of
distributing workloads, without additional optimizations, such as load balancing mechanisms,
caching strategies, and optimized inter-service API calls, the CPU overhead could lead to
undesirable server utilization or additional costs. In the future, further work should be
completed to better identify how intelligent autoscaling policies and optimized microservices
communication models could further improve system performance while offering this level of
scalability.

5.2.4 Memory Usage Analysis

The evaluation of memory utilization between monolithic and microservices
architectures provides crucial insights into how each system manages memory under increasing
load conditions. Since microservices operate in a distributed manner, memory allocation and
consumption behave differently compared to a monolithic system, where all processes share a
single memory space..

Table 5.2 : Memory Utilization Data

User Load | Monolith RAM Usage (GB) Microservice Total RAM Usage (GB)
Idle 2.37 2.56

1000 Users | 2.42 2.99

2500 Users | 2.77 4.0

5000 Users | 3.77 5.06

From Table 5.2, it is evident that at an idle state, the monolithic system consumes 2.37GB of
memory, whereas microservices require slightly more at 2.56GB. This difference arises
because microservices run multiple independent services, each maintaining its own memory
footprint, even when no user requests are being processed. As the system load increases to
1000 users, monolithic memory usage rises modestly to 2.42GB, while microservices require
2.99GB. The nearly 0.6GB difference at this stage indicates that microservices allocate more
memory per service, leading to higher overall consumption.

At 2500 users, the memory disparity becomes more pronounced, with monolithic usage

increasing to 2.77GB, while microservices escalate sharply to 4.00GB. This sharp increase
reflects the distributed architecture’s demand for additional memory to support concurrent
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service execution, inter-service communication, and in-memory data storage for independent
services. Finally, at 5000 users, monolithic memory usage peaks at 3.76GB, while
microservices reach 5.06GB, reinforcing the trend that microservices demand significantly
more memory as concurrency levels increase.
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Figure 5.10: Memory Utilization Trends

The graphical representation in Figure 5.10 further illustrates this trend, showing the difference
in how memory is consumed by monolithic and microservices architectures at increasing user
loads. While monolithic memory usage increases gradually, following a more controlled
growth pattern, microservices demonstrate a steeper rise, particularly beyond 2500 users. The
increasing gap in memory utilization suggests that while microservices offer scalability
advantages, they also impose a significant memory overhead that must be managed efficiently.

One key factor contributing to the higher memory consumption in microservices, as seen in
Figure 5.10, is service isolation. Unlike monolithic systems, where all components share the
same memory space, each microservice runs as an independent process, often requiring its own
memory allocation for execution and caching. This means that instead of a single large
application utilizing memory collectively, microservices require separate memory allocations
for multiple instances, leading to greater overall consumption. Additionally, microservices rely
heavily on inter-service messaging and API calls, which further increase memory overhead as
data is transmitted and temporarily stored between services.

In conclusion, Table 5.2 and Figure 5.10 together highlight the fundamental differences in
memory consumption between monolithic and microservices architectures. While monolithic
systems maintain a more stable and predictable memory footprint, microservices exhibit a
steeper rise in memory demands as user concurrency increases. Table 5.2 provides numerical
evidence of this growth, showing that microservices require almost 35% more memory than
monolithic systems at 5000 users. Meanwhile, Figure 5.10 visually illustrates the increasing
divergence in memory usage, emphasizing the impact of distributed architecture on resource
allocation. These findings suggest that while microservices enable better scalability and
modularity, they require careful memory optimization strategies, such as improved caching,
memory-efficient service orchestration, and resource pooling, to mitigate excessive memory
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overhead and ensure sustainable performance at scale. Future optimizations should explore
techniques like memory-aware autoscaling and improved garbage collection mechanisms to
enhance efficiency in microservices architectures.

5.3  Performance Under Load: Response Time and Throughput Analysis

In this section, we analyze the performance of the Monolithic and Microservices
architectures under varying user loads, focusing on response time and throughput. Response
time measures how quickly the system processes requests, while throughput quantifies the
number of requests handled per second (Chen et al., 2024). To evaluate these metrics, Apache
JMeter (Apache JMeter - Apache JMeterTM, no date) was used to simulate concurrent user
requests at 1000, 2500, and 5000 users. The collected data provides insights into how each
architecture scales under increasing demand.

The performance evaluation was conducted using various system services, including Update
Order Status, Update Address, Get Total Amount, Get Products, Get Order, Get Categories,
Get Address, Create a Cart, and Add Item to Cart, as shown in Table 4.2. These services
represent critical system operations, and their performance under different load conditions
highlights how efficiently each architecture handles increasing concurrency.

5.3.1 Monolithic System Performance

This subsection presents the response time and throughput results for the Monolithic system
under different user loads. Apache JMeter was used to simulate concurrent user requests at
1000, 2500, and 5000 users, capturing the system’s performance metrics. The figures below
illustrate the results obtained from the tests.

Label # Samples Average Std. Dev. Error % Throughput Received.. Sent KB/sec Avg.Bytes

Get Produ... 1000 249 - 213.84 0.00% 411.9/sec 388.54 53.90 966.0
Get Categ... 1000 216 149.90 . 337.8/sec 138.24 44.87 419.0
Get Categ.. 1000 244 142.73 . 313.3/sec 82.60 41.61 270.0
Get Adres... 1000 295 163.14 .00% 290.4/sec 102.94 38.29

Update A... 1000 336 ¢ X 167.35 0. 258.3/sec 92.29 90.80

CreateaC... 1000 320 7 145.92 .00% 251.3/sec 50.79 32.39

Add ltem t... 1000 325 135.46 100.00% 252.0/sec 65.20 68.16

Get Order ... 1000 285 1050 136.62 0.00% 256.1/sec 69.27 33.51

Get Total ... 1000 243 K 1017 128.36 g 263.9/sec 46.13 36.08

Update Or.. 2000 997 149.67 : 536.5/sec 146.69 130.45

TOTAL 11000 266 1753 160.42 9.09% 2584.6/sec 888.43 477.7

Figure 5.11: Monolithic System Response Time and Throughput Under 1000 User Load

N

The first test was conducted with 1000 concurrent users. The system’s response time and
throughput values at this stage are recorded in Figure 5.11.
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For 2500 concurrent users, the system’s response time and throughput were measured again to
observe performance changes as the load increased can be seen in the Figure 5.12.

Figure 5.13: Monolithic System Response Time and Throughput Under 5

9.09%

000 User Load

The final test was performed with 5000 concurrent users, capturing the system’s response time
and throughput under the highest load condition can be seen in the Figure 5.13.

This section only presents the recorded results for the Monolithic architecture under different
loads. A comparative discussion of these results with the Microservices architecture is provided
later in Section 5.3.3.

5.3.2 Microservices System Performance

This subsection presents the response time and throughput results for the Microservices
architecture under different user loads. Apache JMeter was used to simulate concurrent user
requests at 1000, 2500, and 5000 users, capturing the system’s performance metrics. The
figures below illustrate the results obtained from these tests.

Figure 5.14: Microservice System Response Time and Throughput Under 1000 User Load
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The first test was conducted with 1000 concurrent users. The system’s response time and
throughput values at this stage are recorded can be seen in Figure 5.14.

Label

Get Produ...
Get Categ..
Get Categ...

Get Adres...

Update A..

CreateaC...
Add ltem t...

TOTAL

# Samples

2500
2500
2500
2500
2500
2500
2500
2500
2500
5000

27500

Average

840
858
935
1232
1483
1289
1318
1155
1045
857
1079

Std. Dev.

420.26
407.54
373.77
42863
476.40

Throughput Received

241.94
117.97
73.57
80.17
72.34
42.71
37.12
52.52
38.74
103.55
531.76

Sent KB/sec

49.92
44 64
38.15
30.20
71.97
24 .51
48.51
22.65
23.25
81.11
305.41

Avg. Bytes
668.8
370.0
270.0
369.0
365.9
237.0
215.0
320.0
240.0
323.0
336.5

Figure 5.15: Microservice System Response Time and Throughput Under 2500 User Load

For 2500 concurrent users, the system’s response time and throughput were measured again to
observe performance changes as the load increased can be seen in Figure 5.15.

Label

Get Produ..

Get Categ...

Get Adres..

Update A..

CreateaC...
Add ltem t...
Get Order .
Get Total ...
Update Or...

# Samples

4042
4042
4042
4042
4042
4042
4042
4042
4042
8084

Average

1014

959
1173
1522
1972
2170
2210
1987
1814
1488

Max

2611
2430
2150

2960

606.07
487.49
439.12
352.46
230.69

405.50

. Sent KB/sec

261.60
141.63
141.15
117.93
67.11
55.31
77.29
55.54

146.14

123.14
98.83
73.44
53.17

Avg. Bytes
686.4
370.5
270.0
369.0

TOTAL 44462 1618 329 595.27 .09% 14.4/se 698.25

Figure 5.16: Microservice System Response Time and Throughput Under 5000 User Load

The final test was performed with 5000 concurrent users, capturing the system’s response time
and throughput under the highest load condition can be seen in in Figure 5.16.

This section only presented the recorded results for the Microservices architecture under
different loads. A comparative discussion of these results with the Monolithic architecture is
provided later in Section 5.3.3.

5.3.3 Comparative Analysis of Response Time and Throughput
In this part, we will examine Monolithic and Microservices architecture response time
and throughput graphs and discuss these architectures comparatively in terms of load levels.

The following charts show the performance of both architectures with respect to their latency
and request-handling capacity against growing concurrency.
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Figure 5.17: Response Time vs. Users (Monolith vs. Microservices)

The response time graph (Figure 5.17) illustrates that the two architectures diverge significantly
with increasing load in terms of number of concurrent users. Average Response Time : 266
ms Free (Monolithic) vs 406 ms (Microservices) for 1000 concurrent users. When the number
of concurrent users increases to 2500, the Monolithic systems response time increases slightly
to 687 milliseconds, while Microservices system response time increases moderately to 1079
milliseconds. With the concurrent user scenario at 5000, response times continue to increase,
with Monolithic hitting its peak at 1081 milliseconds, while Microservices continue their
downward trend at 1618 milliseconds. This indicates that Monolithic systems are responding
to requests at lower latency for all loads. As per the Microservices architecture, the
communication between the microservices creates an additional overhead and more roundtrips
needed to process requests, hence the slow response time. However, in a Microservices
architecture, as the request communicates with different services, it incurs an overhead of
latency due to network communication. Also from the growing gap against the two
architectures at higher load. That means, Monolithic architecture can do direct call internally
within single process and Microservices architecture incurs latency due to network
communication across distributed components.

3000 Monolithic

I Microservices
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20001
1500t

1000

Throughput (requests/sec)

500¢F

1000 2500 5000
Number of Users
Figure 5.18: Throughput vs. Users (Monolith vs. Microservices)
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However, unlike response time, which can tell us about latency in requests, we would have to
use throughput to understand how many requests a system can handle in a second. Throughput
graph ( Figure 5.18) shows, Monolithic system can process much more requests for every load
conditions described here. Monolithic handled 2584.6 requests per second whereas
Microservices handled 1715.3 requests per second at 1000 users. Although Monolithic had its
best top speed of all —2934.3 requests per second— at 2500 users, Microservices faced an
unexpected fall of 1618.1 requests per second and this indicates that there is some bottleneck
somewhere in the Microservices implementation Monolithic throughput fell slightly from
2678.0 to 2634.8 requests per second at 5000 users, while Microservices was able to recover
to 2114.4 requests per second Microservice architecture throughput throughput fell as we reach
2500 users, and this indicates that overhead of inter-service communication, resource
contention or inefficient load distribution matter and become significant enough impacting the
performance of Microservice architecture. The Monolithic architecture appears to work for all
loads very nicely. Well, Microservices are a tough one to crack on while loads are moderate
but seem to work alright while under extreme levels of users.

The comparison between Monolithic Architecture and Microservices Architecture makes it
clear some performnace trade-offs are involved. One clear trade-off is Monolithic architecture
is way better on response time . Which Monolithic avoiding overlapped overhead of
distributed service calls. Also, Monolithic achieves a higher throughput than in all scenarios
including the fact that it means that the same resources=processor configuration have a greater
number of requests per second from the monolithic end. Though Latency crumbles and
Throughput wobbles It is the scalability characteristic of microservices architecture, That pays
off in the long term. Look at the drop in throughput at 1000 users and recover of throughput at
5000 users and this also indicates once service orchestration has been optimised, resource is
more aligned and communication overhead is reduced microservices architecturee which
consists of small services could serve requests in a more effective way in the high loaded
system.

This shows that Monolithic systems are more suitable for processing individual requests,
whereas Microservices, while being able to scale better, need to do more work in optimizing
communication and load balancing. Microservices shows this drop in throughput at 2500 users
but tells me that bottlenecks exist and must be dealt with at a service level through caching,
asynchronous messaging, et cetera. On the other hand, the Monolithic architecture provides a
constant operation and therefore manifests itself to be efficient for the system which does not
demand the fully distributed processing.

5.4  Refactorability Time & Challenges

Refactoring a monolithic application into a microservices architecture is a time-
consuming and complex process that involves service decomposition, database restructuring,
APl communication design, deployment reconfiguration, and testing. Unlike building a
microservices-based system from the ground up, refactoring requires careful extraction of
tightly coupled components, ensuring they function independently while still maintaining
system integrity. The transition demands significant time investment at each phase, as shown
in below Table 5.3.
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Table 5.3: Time Spent Comparison ( Monolith vs Microservice )

Stage Spend Time on|Spend Time on
Monolithic (hours) | Microservices
(hours)

Service Deployment & Code Structuring 6 10

Database Design & Implementation 4 6

API Development & Communication 2 4

Deployment & Infrastructure Setup 2 )

Testing & Debugging 3 5

As can be seen in Table 11, the service development and code structuring phase is one of the
most time-intensive aspects of refactoring. While a monolithic system typically requires six
weeks to develop as a single, unified codebase, the microservices version extends this
timeframe to ten weeks. This increase in time is primarily due to the need to define service
boundaries, separate business logic, and design independent service interactions. Unlike
monoliths, where components communicate directly through internal function calls,
microservices require well-defined API contracts, inter-service communication protocols, and
fault isolation mechanisms. Additionally, service decomposition requires careful refactoring to
prevent circular dependencies and minimize data duplication, further increasing the time
required for this stage.

The database design and implementation phase, as presented in Table 5.3, also exhibits a
significant difference in time allocation. Monolithic applications typically require four weeks
for database design, as they rely on a single centralized database that serves all system
components. In contrast, microservices require six weeks due to the adoption of the Database
per Service pattern, which involves partitioning data across multiple independent databases.
This shift presents challenges related to schema design, ensuring referential integrity, and
implementing eventual consistency mechanisms. Unlike monoliths, where data consistency is
managed within a single database transaction, microservices often rely on distributed
transactions or event-driven synchronization models, increasing the complexity of database
implementation.

As can be observed in Table 5.3, API development and inter-service communication take twice
as long in a microservices architecture compared to monolithic systems. In a monolith, API
calls occur internally within the same process, typically requiring two weeks to integrate.
However, in a microservices-based system, APIs must be carefully designed to enable service-
to-service communication, extending development time to four weeks.

The testing and debugging phase, as demonstrated in Table 5.3, also shows a considerable
increase in time spent when transitioning from a monolithic to a microservices system. While
monolithic applications can be tested within three weeks, microservices require five weeks due
to the distributed nature of services and the need for additional validation techniques.
Monolithic testing focuses on unit tests, integration tests, and end-to-end functional validation,
all within a single execution environment. In contrast, microservices testing must account for
service isolation, contract testing, APl compatibility, and failure recovery mechanisms. Testing
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must also validate how microservices interact under different latency conditions, network
failures, or high-load scenarios. Debugging is inherently more complex, as logs are distributed
across multiple services,

As can be seen in Table 5.3, every phase of the microservices transition demands additional
time compared to the monolithic approach. The overall time spent on microservices refactoring
is approximately 50-100% higher due to the challenges associated with service decomposition,
database migration, inter-service communication, and deployment management. This
prolonged development cycle is expected, as microservices prioritize scalability, modularity,
and maintainability, which require a well-planned architecture and infrastructure setup.

Despite the increased time investment, microservices provide significant long-term advantages
over monolithic architectures. While monoliths are quicker to develop and deploy, they present
scalability limitations as applications grow. As demand increases, monolithic applications
require vertical scaling, which can be costly and inefficient. Conversely, microservices allow
independent scaling of specific components, optimizing resource utilization and operational
costs over time. Additionally, fault isolation is significantly improved, as failures in one
microservice do not necessarily impact the entire system, enhancing system resilience.

The transition from monolithic to microservices requires careful planning and execution to
balance initial refactoring costs with long-term benefits. While the process demands substantial
time and effort, it enables organizations to build more flexible, scalable, and resilient
applications. Future optimizations, such as automated service discovery, Al-driven
orchestration, and improved microservices development frameworks, could further reduce
refactoring time, making microservices adoption more efficient.

5.5 Hardware & Infrastructure Cost

The transition from a monolithic architecture to a microservices-based system
introduces substantial changes in hardware and infrastructure costs, affecting both short-term
expenses and long-term operational efficiency. While monolithic applications are often more
cost-effective in terms of initial infrastructure investment, microservices architectures demand
a more distributed approach, leading to increased operational overhead. However,
microservices can offer better scalability, fault tolerance, and resource optimization, potentially
reducing costs over time. This section analyzes the cost implications of both architectures,
considering hardware utilization, cloud infrastructure expenses, scalability strategies, and total
cost of ownership (TCO).

A monolithic system is typically deployed on a single powerful server or a cluster of machines,
allowing it to benefit from centralized resource allocation. Hardware costs for monoliths are
relatively predictable, as they primarily involve provisioning a fixed number of high-
performance servers to handle processing, storage, and database management. Vertical scaling
(adding more CPU, memory, or storage to an existing machine) is the main strategy for
handling increased workload. While this approach keeps infrastructure management simple, it
has limitations: hardware upgrades become increasingly expensive as systems approach their
physical limits, leading to higher costs for maintaining performance under peak loads.

On the other hand, microservices architectures require a distributed infrastructure, where

different services are deployed independently across multiple containers, virtual machines, or
cloud instances. This decentralized nature means that scaling is achieved through horizontal
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scaling, where new instances of a service are deployed dynamically based on demand. While
this approach optimizes resource utilization and prevents overloading a single machine, it also
leads to higher hardware and infrastructure costs due to the increased number of computing
nodes required. Studies have shown that microservices consume 30-40% more resources
compared to monolithic applications, mainly due to increased inter-service communication and
the overhead of running multiple instances (Bjerndal et al., 2020).

Infrastructure costs also differ significantly between the two architectures. Monolithic systems
are often deployed on-premises or in a single cloud environment, requiring less network
management and simpler deployment pipelines. Since all components of a monolith run in a
single process space, there are fewer operational costs related to network latency, API calls,
and distributed logging. In contrast, microservices architectures require robust cloud
infrastructure, often relying on container orchestration platforms like Kubernetes to manage
deployment, scaling, and fault tolerance. While these platforms enhance flexibility and
resilience, they introduce additional expenses, including higher compute instance costs,
network bandwidth fees, and container orchestration charges.

One of the biggest cost drivers in microservices is networking and inter-service
communication. Since each microservice communicates with other services via APIs, message
queues, or service meshes, latency and data transfer costs become significant—especially when
running on cloud-based environments. A comparative study (Kamisetty et al., 2023) found that
microservices architectures increase network overhead by 20-50% compared to monoliths,
mainly due to higher API call rates and inter-service messaging costs. Additionally,
microservices deployments often require distributed logging, monitoring, and tracing solutions,
further increasing operational expenses.

Despite the higher initial cost of infrastructure, microservices offer cost advantages in the long
run, particularly in dynamic environments where scalability and fault isolation are critical.
Since each service can scale independently, organizations can optimize resource usage by
allocating compute power only to high-demand services, rather than over-provisioning
resources for the entire application. Additionally, containerized workloads allow microservices
to run efficiently on cloud-native platforms, reducing hardware dependency and enabling pay-
as-you-go cloud pricing models.

The Total Cost of Ownership (TCO) for microservices versus monoliths varies based on
business requirements, traffic patterns, and deployment strategies. A monolithic application
has a lower upfront cost, making it an ideal choice for small to medium-scale applications with
predictable workloads. However, as applications grow, monoliths become difficult to scale
efficiently, leading to higher infrastructure costs due to the need for expensive vertical scaling
solutions. Microservices, while costlier in the early stages, offer better long-term efficiency,
especially in cloud-native environments where scalable, distributed computing reduces overall
operational expenses over time ((Auer et al., 2021).

Overall, the choice between monolith and microservices depends on cost-efficiency trade-offs.
While monolithic architectures are more cost-effective in the short term, they struggle with
scalability and hardware constraints as demand increases. Microservices require higher initial
investment in hardware and infrastructure, but their flexibility, fault isolation, and optimized
resource utilization make them a viable long-term strategy for large-scale applications.

Table 5.4: Cost Analysis Table (Monolithic vs. Microservices)
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Cost Factor

Monolithic Architecture

Microservices Architecture

Server Requirements Requires a few high| Uses  multiple  smaller
performance servers. instances for each service.

Scaling Approach Vertical scaling (adding | Horizontal scaling (adding
more CPU/RAM to a single | more instances to distrube
machine). load).

Database Infrastructure Single database instance for | Multiple ~ database  per

all operations

service, increasing storage
and maintenance costs.

Cloud Hosting Cost

Lower initial costs but may
increase as demand grows.

Higher initial cloud cost due
to multiple services running

concurrently.

Network & Communication | Minimal internal | Higher networking costs due
communication costs. to service to service

communication.
Monitoring & Security Centralized logging and | Requires distributed

secutiy management.
Lower ahead

monitoring tools.

Higher complexity due to
independent service
deployment.

Operational Complexity

5.6  Discussion

The results obtained from the transition from a monolithic to a microservices
architecture demonstrate notable differences in performance, scalability, refactorability, and
cost efficiency. As expected, microservices provided better scalability and distributed resource
utilization, while monolithic architectures showed efficiency in lower overhead costs and
simpler deployment. However, the results also revealed certain unexpected trends, particularly
in CPU utilization, database migration complexity, and refactoring time. This discussion
critically analyzes these findings, providing justifications for observed patterns and comparing
them with literature to support the interpretation.

The performance metrics analysis revealed that CPU and memory utilization behaved
differently across both architectures. As seen in Table 5.1, the monolithic application
experienced CPU bottlenecks at high concurrent loads, reaching 490% CPU utilization under
1000 users and eventually dropping at 5000 users, likely due to request failures, system
overload, or process throttling. In contrast, microservices exhibited more balanced CPU
distribution, but some services, such as the Order and Cart services, showed high resource
consumption under heavy load. This behavior aligns with findings from Bucchiarone et al.
(2020), which highlighted that while microservices enable independent scaling, some services
become performance bottlenecks due to high inter-service communication and database query
loads. The unexpected drop in CPU usage for monolithic architecture at 5000 users may be
attributed to system limitations that led to request failures, preventing full CPU utilization.

Memory utilization followed a similar trend. As observed in Table 5.2, monolithic applications
showed a steady increase in memory consumption, reaching 984MB at 5000 users, while
microservices exhibited more distributed memory allocation. However, some microservices,
particularly those handling frequent database interactions, experienced higher-than-expected
memory usage. This can be explained by service-specific caching, repeated data queries due to
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service isolation, and overhead from API calls. This result is consistent with studies such as
(Auer et al., 2021), which noted that microservices tend to consume 30-40% more memory
compared to monoliths due to duplication of dependencies and container overhead.

The refactorability analysis presented in Table 5.3 highlights another key challenge—the
transition from monolithic to microservices required significantly more time across all stages.
While service development in a monolith required only six weeks, the same stage in
microservices took ten weeks, largely due to service decomposition, API restructuring, and
ensuring inter-service communication. Additionally, database migration proved to be one of
the most time-intensive phases, requiring six weeks for microservices compared to four weeks
in monolithic architecture. This increase is attributed to the complexity of breaking down a
shared database into service-specific databases and handling consistency through distributed
transactions or event-driven synchronization. Database restructuring is one of the most difficult
parts of microservices adoption, particularly for legacy monolithic applications. The results
support this assertion, as ensuring referential integrity, normalizing schema changes, and
handling foreign key relationships added to refactoring complexity.

One of the unexpected findings was that microservices introduced additional network
overhead, leading to increased latency for API interactions. Although microservices were
expected to improve performance through independent scaling, some services experienced
higher-than-anticipated response times, particularly Order Processing and Cart Services. This
can be attributed to higher inter-service communication latency, additional network hops, and
serialization/deserialization overhead. According to (Kamisetty er al, 2023)microservices
architectures inherently introduce 20-50% additional network latency compared to monoliths
due to increased service-to-service calls. These findings suggest that optimizing service
communication through caching, batch processing, or asynchronous messaging could reduce
network overhead.

Despite the increased complexity and higher initial costs, the transition to microservices
ultimately provides greater scalability, resilience, and modular flexibility. The fault isolation
capabilities of microservices prevent a failure in one service from affecting the entire system,
enhancing reliability. Additionally, independent deployment pipelines allow faster release
cycles, enabling continuous integration and continuous deployment (CI/CD) strategies.
However, the findings also highlight that organizations must carefully assess their architecture
before migrating, as microservices introduce operational overhead that requires a well-
structured DevOps approach.

In conclusion, the discussion of results indicates that while microservices improve scalability
and modularity, they introduce challenges related to refactorability, infrastructure costs, and
network performance. The results align with existing research, reinforcing that microservices
are not a one-size-fits-all solution—they work best for large-scale, high-traffic applications
requiring independent scalability, whereas monoliths remain viable for smaller applications
with predictable workloads. Future work should explore optimization strategies for inter-
service communication, database partitioning techniques, and cost-efficient cloud
infrastructure management to further refine the efficiency of microservices adoption.
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Chapter 6. Conclusion and Future Work

6.1 Conclusion

The study performed a transition from a monolithic architecture to a microservices-
based system emphasizing refactorability, scalability, and performance and adopting a shared
database model. The results show that microservices significantly enhance the system
capability to scale up and tolerate faults, facilitating modularization and individual service
deployments. However, the adoption of the shared database model brings its own set of
challenges, resulting in scalability bottlenecks and database contention issues (Paccha &
Velepucha, 2025). Although scalability is affected, a shared database enables data consistency
among the services, which is a paramount requirement in real-world applications.

An important highlight of the study is that, in as much as scalability is inherent in microservices
architectures, database design is pertinent in keeping the system efficient. Findings indicated
that monolithic architectures are not able to withstand loads when they increase but offer better
horizontal scalability compared to microservices architectures. The latter introduces an
operational overhead compared to the former by requiring additional infrastructure like service
discovery, APl Gateway, and Distributed logging system (Tian et al., 2024). Moreover,
Strangler Fig Pattern offered a way to gradually migrate a monolithic system with minimum
downtime by decoupling monolithic components incrementally into loosely coupled services.

The shared database model provided both benefits and limitations, with the benefit of ensuring
data consistency and minimizing migration complexity, but at the expense of limiting
microservice scalability potential since highly concurrent read/write operations generally are
not possible (Amrutha, Jayalakshmi and Geetha, 2024). Additionally, the research shows that
microservices must be carefully decomposed to avoid incurring too much overhead in API
communications, as this can hinder performance. Overall, the results suggest that organisations
looking to adopt microservices must carefully evaluate their database strategy and optimise
inter-service communication to achieve an optimal balance of performance, maintainability
and scalability.

While this study provides valuable insights into the implementation of microservices
architecture with a shared database architecture, it is not without limitations. The study was
conducted in a controlled environment, and factors such as network latency, cloud re-
platforming costs, and real-world traffic patterns were not adequately addressed. In addition,
the study also did not consider alternative database models in microservices architecture, such
as database-per-service, CQRS (Command Query Responsibility Segregation) and event-
driven architecture, etc., which can further improve microservices architecture efficiency.
Security concerns were also outside the scope of the study, such as service authentication/
authorization mechanisms and API security. Future work should examine these aspects in
greater detail, to provide a more comprehensive evaluation of microservices-based
architectures.
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6.2 Future Work

The paper interpreted the future work which is to compare and contrast different
strategies of database in microservices architectures. Further, the assessment of consistency,
performance and scalability in terms of the shared database model and database-per-service
based model is required by future research. Implementing event-drive architectures with
Apache Kafka or RabbitMQ might alleviate some of the database contention problems
observed in this research, as the communication between the services is asynchronous (Paccha
and Velepucha, 2025). CQRS can be utilised to decompose the system further optimizing the
system even in high load scenario by separating the read and write paths.

Another important direction is Automating Monolith-to-Microservices Migration. Despite the
advancements, monolith-to-microservices migrations still require significant manual effort,
ultimately adding development time and complexity. Future work could explore automatic
service decomposition tools powered by Al which could study monolithic systems and
automatically separate out loosely coupled microservices. In addition, an automated testing
framework for microservices migrations may be created to solutions performance regressions
and integration failures early in the migration process .

Next, it is also crucial to deploy the project live to evaluate the scalability in the wild. This
paper highlighted scalability of the project in a controlled local environment, but deploying it
online will expose the project to realistic user traffic and clients with distribution of work
which could all help us observe its real-time performance. In addition, real online deployment
test results would help us understand how specific cloud infrastructures perform (e.g., AWS
vs. GCE), the impact of network latency, and the cost-performance tradeoff during deployment.
Existing cloud-based solutions can be used such as Kubernetes, AWS, Google Cloud or Azure
so that the microservices can be dynamically scaled up and down to the maximum level and be
tested on how they perform in production kind of environments.

Alternatively, you could explore performance optimization techniques. Consider Cache:
Exploring caching mechanisms like Redis, Memcached can help reduce database load and
enhancements response time in microservices. On top of that there are also possibility to
research the horizontal scaling strategies with Kubernetes orchestration in order to utilize the
resources more efficiently in cloud native environments. It is also possible in serverless
computing strategies such as AWS Lambda, Azure Functions, GCP Cloud Functions for
microservices-based strategies (Amrutha, Jayalakshmi and Geetha, 2024).

In-depth focus on security is needed, as well. In the future work this should be expanded into
service to service authentication methods (OAuth, JWT, and API security best practices. It
might also be worth looking into the use of service mesh technologies like Istio, and Linkerd,
which help with the security, observability, and traffic management among microservices. Last
but not the least, one can also have failure recovery mechanisms like circuit breaker, retries
and distributed tracing to achieve.

Lastly, it would be quite useful to illustrate real case studies how these findings are put into
practice at an enterprise scale. We recommend that future work continue and broaden efforts
to enabling longitudinal microservices studies, enabling researchers to longitudinally assess
microservices architectures in the facets of maintainability, operational costs, and longer-term
business impacts of adopting microservices — thus informing organizations whether and how
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they should migrate their monolithic systems to microservices architectures with cost-effective
and performance-efficient performance scalability in mind.

58



References

Alcides Mora Cruzatty, A. et al. (2024) ‘Assessment of Container Orchestration Strategies in
the Migration of Monolithic Applications to a Microservices Architecture Using Open-Source
Technologies’, in M.Z. Vizuete et al. (eds) Applied Engineering and Innovative Technologies.
Cham: Springer Nature Switzerland, pp. 83-96. Available at: https://doi.org/10.1007/978-3-
031-70760-5_7.

Al-Debagy, O. and Martinek, P. (2018) ‘A Comparative Review of Microservices and
Monolithic Architectures’, in ResearchGate. Available at:
https://doi.org/10.1109/CINTI.2018.8928192.

Ali, J.M. (2024) ‘Software engineering architecture and its promising opportunities’, Advances
in Engineering Innovation, 7, pp. 37-40. Available at: https://doi.org/10.54254/2977-
3903/7/2024034.

AlOmar, E.A., Mkaouer, M.W. and Ouni, A. (2024) ‘Behind the Intent of Extract Method
Refactoring: A Systematic Literature Review’, IEEE Transactions on Software Engineering,
50(4), pp. 668-694. Available at: https://doi.org/10.1109/TSE.2023.3345800.

Amrutha, L., Jayalakshmi, D.S. and Geetha, J. (2024) °‘Enhancing Deployment and
Performance Measurement of Serverless Cloud Microservices with Warm Start’, in 2024 15th
International Conference on Computing Communication and Networking Technologies
(ICCCNT). 2024 15th International Conference on Computing Communication and
Networking Technologies (ICCCNT), pp. 1-7. Available at:
https://doi.org/10.1109/ICCCNT61001.2024.10725992.

Apache JMeter - Apache JMeter™ (no date). Available at: https://jmeter.apache.org/
(Accessed: 23 February 2025).

Apache Kafka (no date) Apache Kafka. Available at: https://kafka.apache.org/documentation/
(Accessed: 23 February 2025).

Ataei, P. (2024) ‘Cybermycelium: a reference architecture for domain-driven distributed big
data systems’, Frontiers in Big Data, 7. Available at:
https://doi.org/10.3389/fdata.2024.1448481.

Auer, F. etal. (2021) ‘From monolithic systems to Microservices: An assessment framework’,
Information and  Software  Technology, 137, p. 106600. Awvailable at:
https://doi.org/10.1016/j.infsof.2021.106600.

Barzotto, T.R.H. and Farias, K. (2022) Assessing the impacts of decomposing a monolithic
application  for microservices: A case study, ResearchGate. Available at:
https://doi.org/10.48550/arXiv.2203.13878.

Bashtovyi, A. and Fechan, A. (2024) ‘Distributed Transactions in Microservice Architecture:
Informed Decision-making Strategies’, Visnik Nacional'nogo universitetu ‘L'vivs'ka
politehnika’. Serid Informacijni sistemi ta merezi, 15, pp. 449-459. Available at:
https://doi.org/10.23939/sisn2024.15.449.

Baumgartner, J.K. (2022) ‘From Monolith to Microservices’.

Berry, V. et al. (2024) ‘Is it Worth Migrating a Monolith to Microservices? An Experience
Report on Performance, Availability and Energy Usage’, in 2024 IEEE International
Conference on Web Services (ICWS). 2024 IEEE International Conference on Web Services
(ICWS), pp. 944-954. Available at: https://doi.org/10.1109/ICWS62655.2024.00112.
Bhatnagar, S. and Mahant, R. (2024) Fortifying Financial Systems: Exploring the Intersection
of  Microservices and  Banking  Security, = ResearchGate.  Available at:
https://doi.org/10.13140/RG.2.2.13110.72001.

Bjegrndal, N. et al. (2020) Migration from Monolith to Microservices : Benchmarking a Case
Study, ResearchGate. Available at: https://doi.org/10.13140/RG.2.2.27715.14883.

59



Chaieb, M., Sellami, K. and Saied, M.A. (2023) ‘Migration to Microservices: A Comparative
Study of Decomposition Strategies and Analysis Metrics’.

Chen, M. et al. (2024) ‘TraDE: Network and Traffic-aware Adaptive Scheduling for
Microservices Under Dynamics’. arXiv. Available at:
https://doi.org/10.48550/arXiv.2411.05323.

Curnicov, A. (2025) Research on microservices architecture for an Automated Surveillance
System. Thesis. Universitatea Tehnica a Moldovei. Available at:
https://repository.utm.md/handle/5014/29200 (Accessed: 19 February 2025).

Dragoni, N. et al. (2017) ‘Microservices: yesterday, today, and tomorrow’, in ResearchGate.
Available at:
https://www.researchgate.net/publication/315664446 Microservices_yesterday today and_t
omorrow (Accessed: 5 February 2025).

El Akhdar, A., Baidada, C. and Kartit, A. (2024) ‘Adaptability of Microservices Architecture
in IoT Systems: A Comprehensive Review’, in Proceedings of the 7th International
Conference on Networking, Intelligent Systems and Security. New York, NY, USA:
Association for Computing Machinery (NISS °24), pp. 1-9. Available at:
https://doi.org/10.1145/3659677.3659734.

Fowler, M. and Beck, K. (2019) Refactoring: improving the design of existing code. Second
edition. Boston Columbus New York San Francisco Amsterdam Cape Town Dubai London
Munich: Addison-Wesley (The Addison-Wesley signature series).

Gandhi, H. and Vashishtha, S. (2025) IMPLEMENTING SCALABLE MICROSERVICES FOR
BIG DATA PROCESSING IN CLOUD ENVIRONMENTS, ResearchGate. Available at:
https://doi.org/10.56726/IRIMETS66275.

Garimilla, M. (2024) Microservices Architecture: Revolutionizing Modern Software
Development, ResearchGate. Available at: https://doi.org/10.15680/1JIRSET.2024.1309090.
Goniwada, S.R. (2022) Cloud Native Architecture and Design: A Handbook for Modern Day
Architecture and Design with Enterprise-Grade Examples. Berkeley, CA: Apress. Available
at: https://doi.org/10.1007/978-1-4842-7226-8.

Gonzélez, S. and Ortiz, 1. (2024) ‘Overcoming Challenges in Microservice Architectures’,
ResearchGate [Preprint]. Available at:
https://www.researchgate.net/publication/386219405 Overcoming_Challenges_in_Microserv
ice_Architectures (Accessed: 18 February 2025).

Harris, C. (no date) Microservices vs. monolithic architecture, Atlassian. Available at:
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-
monolith (Accessed: 12 February 2025).

Hassan, H., Abdel-Fattah, M.A. and Mohamed (2024) ‘Migrating from Monolithic to
Microservice Architectures: A Systematic Literature Review’, ResearchGate [Preprint].
Available at: https://doi.org/10.14569/IJACSA.2024.0151013.

Jani, Y. (2024) Unified Monitoring for Microservices: Implementing Prometheus and Grafana
for Scalable Solutions, ResearchGate. Available at: https://doi.org/10.51219/JAIMLD/yash-
jani/206.

Kamisetty, A. et al. (2023) ‘Microservices vs. Monoliths: Comparative Analysis for Scalable
Software  Architecture ~ Design’, ResearchGate [Preprint].  Available  at:
https://doi.org/10.18034/ei.v11i2.734.

Karwatka, P. (2020) Monolithic architecture vs microservices, Cloudflight. Available at:
https://www.cloudflight.io/en/blog/monolithic-architecture-vs-microservices/ (Accessed: 23
February 2025).

Kassetty, N. and Chippagiri, S. (2025) Beyond the Monolith: Comprehensive Strategies for
Architecting, Scaling, and Sustaining Resilient Distributed Systems, ResearchGate. Available
at: https://doi.org/10.34218/1JRCAIT_08_01_016.

60



Khakame, P.W. (2016) Development of a scalable microservice architecture for web services
using os-level virtualization.  Thesis.  University of Nairobi. Available at:
http://erepository.uonbi.ac.ke/handle/11295/99091 (Accessed: 14 February 2025).
Kristiyanto, D.Y. et al. (2024) ‘Comprehensive Framework for Transitioning Monolithic to
Microservices in MVC Context’, in 2024 3rd International Conference on Creative
Communication and Innovative Technology (ICCIT). 2024 3rd International Conference on
Creative Communication and Innovative Technology (ICCIT), pp. 1-7. Available at:
https://doi.org/10.1109/1CCI1T62134.2024.10701144.

Maj, J., Zielony, P. and Piotrowski, K. (2024) ‘Migrating WSN Applications from Monolithic
to a Modular Approach Based on the tinyDSM Middleware: Scenarios and Analysis’, in 2024
IEEE Conference on Pervasive and Intelligent Computing (P1Com). 2024 IEEE Conference on
Pervasive and Intelligent Computing (PICom), pp. 119-124. Available at:
https://doi.org/10.1109/P1Com64201.2024.00023.

Manchana, R. (2021) ‘Balancing Agility and Operational Overhead: Monolith Decomposition
Strategies for Microservices and Microapps with Event-Driven Architectures’, North American
Journal of Engineering Research, 2(2). Available at: https://najer.org/najer/article/view/20
(Accessed: 14 February 2025).

Mehta, G. et al. (2024) ‘Revisiting Monoliths: A Pragmatic Case for Transitioning from
Microservices Back to Monolithic Architectures’, ResearchGate [Preprint]. Available at:
https://doi.org/10.17148/IJARCCE.2024.131251.

Microservices Pattern: Pattern: APl Gateway / Backends for Frontends (no date)
microservices.io. Available at: http://microservices.io/patterns/apigateway.html (Accessed: 8
February 2025).

Microservices Pattern: Pattern: Shared database (no date) microservices.io. Available at:
http://microservices.io/patterns/data/shared-database.html (Accessed: 8 February 2025).
Monolithic vs Microservices - Difference Between Software Development Architectures- AWS
(2024) Amazon Web Services, Inc. Available at: https://aws.amazon.com/compare/the-
difference-between-monolithic-and-microservices-architecture/  (Accessed: 12 February
2025).

Monoliths to Microservices using the Strangler Pattern (no date) Amplication Blog. Available
at: https://amplication.com/blog/monoliths-to-microservices-using-the-strangler-pattern
(Accessed: 8 February 2025).

Muley, Y. (2024) ‘Comparative Analysis of Monolithic and Microservices Architectures in
Financial Software Development’, Journal of Artificial Intelligence, Machine Learning and
Data Science, 2(4), pp. 1846-1848. Available at: https://doi.org/10.51219/JAIMLD/Y ogesh-
muley/408.

Nassima, A.M., Hanae, S. and Karim, B. (2024) ‘Towards Decomposing Monolithic
Applications into Microservices: Dynamic Analysis’, in Y. Mejdoub and A. Elamri (eds)
Proceeding of the International Conference on Connected Objects and Artificial Intelligence
(COCIA2024). Cham: Springer Nature Switzerland, pp. 99-104. Available at:
https://doi.org/10.1007/978-3-031-70411-6_16.

Newman, S. (2019) ‘Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith’.

Nitin, V. et al. (2023) ‘CARGO: AI-Guided Dependency Analysis for Migrating Monolithic
Applications to Microservices Architecture’, in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. New York, NY, USA:
Association for Computing Machinery (ASE °22), pp. 1-12. Available at:
https://doi.org/10.1145/3551349.3556960.

Owen, A. (2025) Microservices Architecture and APl Management: A Comprehensive Study
of Integration, Scalability, and Best Practices, ResearchGate. Available at:

61



https://www.researchgate.net/publication/388952031 Microservices_Architecture_and_API_
Management_A_Comprehensive_Study_of Integration_Scalability_and_Best Practices
(Accessed: 18 February 2025).

Paccha, P.M. and Velepucha, V.V. (2025) ‘Data Domain Servitization for Microservices
Architecture’, Latin-American Journal of Computing, 12(1), pp. 59-67.

Perry, M. (2023) 5 Tips For Managing Your Internal Developer Platform. Available at:
https://www.govery.com/blog/5-tips-for-managing-your-internal-developer-platform/
(Accessed: 26 February 2025).

Powell, P. and Smalley, I. (2024) Monolithic vs. Microservices Architecture | IBM. Available
at: https://www.ibm.com/think/topics/monolithic-vs-microservices (Accessed: 27 February
2025).

Ramachandran, N. and Thirumaran, M. (2024) ‘A Novel Approach for Dynamic Microservices
Composition: Harnessing the Power of the PMCE Framework’, in 2024 International
Conference on Signal Processing, Computation, Electronics, Power and Telecommunication
(IConSCEPT). 2024 International Conference on Signal Processing, Computation,
Electronics, Power and Telecommunication (IConSCEPT), pp. 1-6. Available at:
https://doi.org/10.1109/1ConSCEPT61884.2024.10627913.

Salaheddin Elgheriani, N. and Ali Salem Ahme, N.D. (2022) ‘MICROSERVICES VS.
MONOLITHIC ARCHITECTURES [THE DIFFERENTIAL STRUCTURE BETWEEN
TWO ARCHITECTURES]’, MINAR International Journal of Applied Sciences and
Technology, 4(3), pp. 500-514. Available at: https://doi.org/10.47832/2717-8234.12.47.
Salunkhe, V. et al. (2024) ‘Leveraging Microservices Architecture in Healthcare: Enhancing
Agility and Performance in Clinical Applications’. Rochester, NY: Social Science Research
Network. Available at: https://doi.org/10.2139/ssrn.4985002.

Samant, P.S. (2024) MICROSERVICES IN THE CLOUD: ENABLING SCALABILITY,
FLEXIBILITY, AND RAPID DEPLOYMENT, ResearchGate. Available at:
https://www.researchgate.net/publication/381306736_MICROSERVICES IN_THE_CLOU
D_ENABLING_SCALABILITY_FLEXIBILITY_AND_RAPID_DEPLOYMENT
(Accessed: 14 February 2025).

Santos, L. et al. (2024) ‘Microfront-End: Systematic Mapping’:, in Proceedings of the 20th
International Conference on Web Information Systems and Technologies. 20th International
Conference on Web Information Systems and Technologies, Porto, Portugal: SCITEPRESS -
Science and Technology Publications, pp. 119-130. Available at:
https://doi.org/10.5220/0013015400003825.

Santos, T.C. (2018) Adopting Microservices.

Seedat, M. et al. (2023) Systematic Mapping of Monolithic Applications to Microservices
Architecture, ResearchGate. Available at:
https://doi.org/10.22541/au.168110476.68608378/v1.

Sethi, S. and Panda, S. (2024) ‘Transforming Digital Experiences: The Evolution of Digital
Experience Platforms (DXPs) from Monoliths to Microservices: A Practical Guide’, Journal
of Computer and Communications, 12(2), pp. 142-155. Awvailable at:
https://doi.org/10.4236/jcc.2024.122009.

Shao, P. et al. (2024) ‘Design and Implementation of an Electricity Market Trading Platform
Architecture for High Concurrency Access by Market Entities’, in 2024 IEEE 6th Advanced
Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC). 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and
Automation ~ Control  Conference  (IMCEC), pp. 746-751. Available at:
https://doi.org/10.1109/IMCEC59810.2024.10575639.

62



Soma (2024) Horizontal scaling vs Vertical Scaling in System Design, DEV Community.
Available at:  https://dev.to/somadevtoo/horizontal-scaling-vs-vertical-scaling-in-system-
design-3n09 (Accessed: 13 February 2025).

Strangler fig pattern - AWS Prescriptive Guidance (no date). Available at:
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/strangler-
fig.html (Accessed: 8 February 2025).

Sulkava, A. (2023) ‘Building scalable and fault-tolerant software systems with Kafka’.

Sun, Y. (no date) ‘A Comparative Study of Application Performance and Resource
Consumption between Monolithic and Microservice Architectures’.

Tapia, F. et al. (2020) ‘From Monolithic Systems to Microservices: A Comparative Study of
Performance’, Applied Sciences, 10(17), p. 5797. Available at:
https://doi.org/10.3390/app10175797.

Thatikonda, V.K. and Mudunuri, H.R.V. (2024) ‘Microservices vs. Monoliths: Choosing the
Right Architecture for Your Project’, International Journal of Software Computing and Testing
[Preprint].

Tian, T. et al. (2024) ‘Design and Application of Database Architecture with Super Large-
Scale for Marketing Service System of Energy Internet in Enterprise Digital Transformation’,
in 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS).
2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS), pp.
275-285. Available at: https://doi.org/10.1109/ICEEPS62542.2024.10693085.

Wang, Y. (2024) ‘Optimizing Payment Systems with Microservices and Event-Driven
Architecture: The Case of Mollie Platform’.

ZakerZavardehi, H. (2024) A Semi-Automated Approach for Incremental Migration from
Monolithic to Microservices Architecture. Thesis. Available at:
https://macsphere.mcmaster.ca/handle/11375/30255 (Accessed: 18 February 2025).

63



	Chapter 1.  Introduction
	1. 1 Background
	1. 2 Problem Statement
	1. 3 Research Questions
	1. 4 Research Objectives
	1. 5 Contributions
	1. 6 Thesis Organization

	Chapter 2.  Theoretical Background
	2. 1 Understanding Architectural Transitions: From Monoliths to Microservice
	2. 2 Monolithic Architecture: A Unified but Rigid Approach
	2. 3 Microservice Architecture: A Modular and Scalable Paradigm
	2. 4 Scaling in Software Engineering: Vertical vs. Horizontal Scaling
	2. 5 Performance and Resource Utilization
	2. 6 Refactorability in Software Systems: Transitioning to Microservices
	2. 7 Theoretical Summary: Foundations for Implementation

	Chapter 3.  Literature Review
	3. 1 Overview of Monolithic and Microservices Architectures
	3. 2 Refactorability: Definition and Importance
	3. 3 Challenges in Transitioning from Monolith to Microservices
	3. 4 Existing Transition Strategies and Best Practices
	3. 5 Discussion on Literature Review

	Chapter 4.  Methodology
	4. 1 Overview
	4. 2 Proposed Framework/Model/Technique
	4.2.1 Architectural Design of Monolith vs. Microservices (Strangler Fig Pattern)
	4.2.2 Service Decomposition Strategy
	4.2.3 Data Management (Shared Database Model)
	4.2.4 Deployment and Scaling

	4. 3 Methodology
	4.3.1 System Design and Implementation
	4.3.2 Evaluation Setup
	4.3.3 Case Study/Experimental Setup

	4. 4 Evaluation Criteria
	4. 5 Benchmark Algorithms

	Chapter 5.  Results and Discussion
	5. 1 Quantative Insights from System
	5. 2 Performance Under Load: Docker Stats Analysis
	5.2.1 Monolithic System Performance
	5.2.2 Microservices System Performance
	5.2.3 CPU Usage Analysis
	5.2.4 Memory Usage Analysis

	5. 3 Performance Under Load: Response Time and Throughput Analysis
	5.3.1 Monolithic System Performance
	5.3.2 Microservices System Performance
	5.3.3 Comparative Analysis of Response Time and Throughput

	5. 4 Refactorability Time & Challenges
	5. 5 Hardware & Infrastructure Cost
	5. 6 Discussion

	Chapter 6.  Conclusion and Future Work
	6. 1 Conclusion
	6. 2 Future Work


